△AQF的外接圆圆心为(a.0).半径r=|FQ|=a 查看更多

 

题目列表(包括答案和解析)

(2012•孝感模拟)已知集合M={1,2,3},N={1,2,3,4},定义函数f:M→N.若点A(1,f(1)),B(2,f(2)),C(3,f(3)),△ABC的外接圆圆心为D,且
DA
+
DC
DB
(γ∈R),则满足条件的函数f(x)有(  )

查看答案和解析>>

如图,在平面直角坐标系xOy中,A(a,0)(a>0),B(0,a),C(-4,0)D(0,4)设△AOB的外接圆圆心为E.
(1)若⊙E与直线CD相切,求实数a的值;
(2)设点P在圆E上,使△PCD的面积等于12的点P有且只有三个,试问这样的⊙E是否存在,若存在,求出⊙E的标准方程;若不存在,说明理由.

查看答案和解析>>

三角形ABC的外接圆圆心为O且半径为1,若3O
A
+4O
B
+5O
C
=
0
O
C
•A
B
=(  )
A、
7
5
B、-
1
5
C、
12
5
D、-
7
5

查看答案和解析>>

已知集合M={1,2,3},N={1,2,3,4},定义函数f:M→N.若点A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圆圆心为D,且
DA
+
DC
DB
(λ∈R)
,则满足条件的函数f(x)有(  )
A、6个B、10个
C、12个D、16个

查看答案和解析>>

如图,在平面直角坐标系xOy中,A(a,0)(a>0),B(0,a),C(-4,0),D(0,4),设△AOB的外接圆圆心为E.
(1)问圆心E到直线CD的距离是否为定值,若是,求出定值;若不是,说明理由;
(2)问当a取何值时,圆E与直线CD相切,并求出此时⊙E的标准方程.

查看答案和解析>>

 

1.(1)因为,所以

      又是圆O的直径,所以

      又因为(弦切角等于同弧所对圆周角)

      所以所以

      又因为,所以相似

      所以,即

  (2)因为,所以

       因为,所以

       由(1)知:。所以

       所以,即圆的直径

       又因为,即

     解得

2.依题设有:

 令,则

 

 

3.将极坐标系内的问题转化为直角坐标系内的问题

  点的直角坐标分别为

  故是以为斜边的等腰直角三角形,

  进而易知圆心为,半径为,圆的直角坐标方程为

      ,即

  将代入上述方程,得

  ,即

4.假设,因为,所以

又由,则

所以,这与题设矛盾

又若,这与矛盾

综上可知,必有成立

同理可证也成立

命题成立

5. 解:由a1=S1,k=.下面用数学归纳法进行证明.

1°.当n=1时,命题显然成立;

2°.假设当n=k(kN*)时,命题成立,

即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),

则n=k+1时,1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)

=( k+1)(k+1+1)(k+1+2)(k+1+3)

即命题对n=k+1.成立

由1°, 2°,命题对任意的正整数n成立.

6.(1)因为

      ,所以

       故事件A与B不独立。

   (2)因为

      

       所以

 

 

 

 

 

 

 

 

 

 

 

 


同步练习册答案