.令得 查看更多

 

题目列表(包括答案和解析)

如图,在面积为4的正方形ABCD中,连接各边中点得正方形A1B1C1D1,此时正方形A1B1C1D1的面积记作a1;再连接正方形A1B1C1D1各边中点得正方形A2B2C2D2,此时正方形A2B2C2D2的面积记作a2;…;如此继续下去,得到一个数列{an}.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=n•2n+1,cn=anbn,求数列{cn}的前n项和Sn

查看答案和解析>>

中,满足,边上的一点.

(Ⅰ)若,求向量与向量夹角的正弦值;

(Ⅱ)若=m  (m为正常数) 且边上的三等分点.,求值;

(Ⅲ)若的最小值。

【解析】第一问中,利用向量的数量积设向量与向量的夹角为,则

=,得,又,则为所求

第二问因为=m所以

(1)当时,则= 

(2)当时,则=

第三问中,解:设,因为

所以于是

从而

运用三角函数求解。

(Ⅰ)解:设向量与向量的夹角为,则

=,得,又,则为所求……………2

(Ⅱ)解:因为=m所以

(1)当时,则=-2分

(2)当时,则=--2分

(Ⅲ)解:设,因为

所以于是

从而---2

==

=…………………………………2

,则函数,在递减,在上递增,所以从而当时,

 

查看答案和解析>>

计算,可以采用以下方法:

构造恒等式,两边对x求导,

,在上式中令,得

.类比上述计算方法,

计算              .

 

查看答案和解析>>

计算,可以采用以下方法:构造等式:
,两边对x求导,得,在上式中令,得.类比上述计算方法,计算            

查看答案和解析>>

已知数学公式数学公式
(1)若数学公式,求x的值;
(2)若数学公式,求f(x)的最大值,并且求使f(x)取得最大值的x值;
(3)令数学公式,判断函数g(x)的奇偶性,并说明理由.

查看答案和解析>>

 

1.(1)因为,所以

      又是圆O的直径,所以

      又因为(弦切角等于同弧所对圆周角)

      所以所以

      又因为,所以相似

      所以,即

  (2)因为,所以

       因为,所以

       由(1)知:。所以

       所以,即圆的直径

       又因为,即

     解得

2.依题设有:

 令,则

 

 

3.将极坐标系内的问题转化为直角坐标系内的问题

  点的直角坐标分别为

  故是以为斜边的等腰直角三角形,

  进而易知圆心为,半径为,圆的直角坐标方程为

      ,即

  将代入上述方程,得

  ,即

4.假设,因为,所以

又由,则

所以,这与题设矛盾

又若,这与矛盾

综上可知,必有成立

同理可证也成立

命题成立

5. 解:由a1=S1,k=.下面用数学归纳法进行证明.

1°.当n=1时,命题显然成立;

2°.假设当n=k(kN*)时,命题成立,

即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),

则n=k+1时,1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)

=( k+1)(k+1+1)(k+1+2)(k+1+3)

即命题对n=k+1.成立

由1°, 2°,命题对任意的正整数n成立.

6.(1)因为

      ,所以

       故事件A与B不独立。

   (2)因为

      

       所以

 

 

 

 

 

 

 

 

 

 

 

 


同步练习册答案