题目列表(包括答案和解析)
解:因为有负根,所以在y轴左侧有交点,因此
解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2
13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点
(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数
数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。
6. 解析:因为f(x)=ax+b有一个零点是2,所以f(2)=2a+b=0,所以b=-2a,所以,所以零点是
一所大学图书馆有6台复印机供学生使用管理人员发现,每台机器的维修费用与其使用的时间有一定的关系,根据去年一年的记录,得到每周使用时间(单位:小时)与年维修费用(单位:元)的数据如下:
时间 | 33 | 21 | 31 | 37 | 46 | 42 |
费用 | 16 | 14 | 25 | 29 | 38 | 34 |
则使用时间与维修费用之间的相关系数为
解::因为,所以f(1)f(2)<0,因此f(x)在区间(1,2)上存在零点,又因为y=与y=-在(0,+)上都是增函数,因此在(0,+)上是增函数,所以零点个数只有一个方法2:把函数的零点个数个数问题转化为判断方程解的个数问题,近而转化成判断与交点个数问题,在坐标系中画出图形
由图看出显然一个交点,因此函数的零点个数只有一个
袋中有50个大小相同的号牌,其中标着0号的有5个,标着n号的有n个(n=1,2,…9),现从袋中任取一球,求所取号码的分布列,以及取得号码为偶数的概率.
15.解:根据条件去画满足条件的二次函数图象就可判断出
某大型超市为促销商品,特举办“购物摇奖100%中奖”活动,凡消费者在该超市购物满20元,享受一次摇奖机会,购物满40元,享受两次摇奖机会,依次类推。摇奖机的旋转圆盘是均匀的,扇形区域A、B、C、D、E所对应的圆心角的比值分别为1:2:3:4:5。相应区域分别设立一、二、三、四、五等奖,奖金分别为5元、4元、3元、2元、1元。求某人购物30元,获得奖金的分布列.
解:能否投中,那得看抛物线与篮圈所在直线是否有交点。因为函数的零点是-2与4,篮圈所在直线x=5在4的右边,抛物线又是开口向下的,所以投不中。
某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,
(1)他收旅客的租车费η是否也是一个随机变量?如果是,找出租车费η与行车路程ξ的关系式;
(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?这种情况下,停车累计时间是否也是一个随机变量?
1.(1)因为,所以
又是圆O的直径,所以
又因为(弦切角等于同弧所对圆周角)
所以所以
又因为,所以相似
所以,即
(2)因为,所以,
因为,所以
由(1)知:。所以
所以,即圆的直径
又因为,即
解得
2.依题设有:
令,则
3.将极坐标系内的问题转化为直角坐标系内的问题
点的直角坐标分别为
故是以为斜边的等腰直角三角形,
进而易知圆心为,半径为,圆的直角坐标方程为
,即
将代入上述方程,得
,即
4.假设,因为,所以。
又由,则,
所以,这与题设矛盾
又若,这与矛盾
综上可知,必有成立
同理可证也成立
命题成立
5. 解:由a1=S1,k=.下面用数学归纳法进行证明.
1°.当n=1时,命题显然成立;
2°.假设当n=k(kN*)时,命题成立,
即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),
则n=k+1时,1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=( k+1)(k+1+1)(k+1+2)(k+1+3)
即命题对n=k+1.成立
由1°, 2°,命题对任意的正整数n成立.
6.(1)因为,,
,所以
故事件A与B不独立。
(2)因为
所以
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com