且点在轴上方时.求线段垂直平 查看更多

 

题目列表(包括答案和解析)

已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。

(I)求曲线的方程;

(II)试证明:在轴上存在定点,使得总能被轴平分

【解析】第一问中设为曲线上的任意一点,则点在圆上,

,曲线的方程为

第二问中,设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 

,∴

确定结论直线与曲线总有两个公共点.

然后设点,的坐标分别, ,则,  

要使轴平分,只要得到。

(1)设为曲线上的任意一点,则点在圆上,

,曲线的方程为.  ………………2分       

(2)设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 ,……5分            

,∴

∴直线与曲线总有两个公共点.(也可根据点M在椭圆的内部得到此结论)

………………6分

设点,的坐标分别, ,则,   

要使轴平分,只要,            ………………9分

,        ………………10分

也就是

,即只要  ………………12分  

时,(*)对任意的s都成立,从而总能被轴平分.

所以在x轴上存在定点,使得总能被轴平分

 

查看答案和解析>>

(本小题12分)设点,点Ay轴上移动,点Bx轴正半轴(包括原点)上移动,点MAB连线上,且满足

(Ⅰ)求动点M的轨迹C的方程;

(Ⅱ)设轨迹C的焦点为F,准线为l,自M引的垂线,垂足为N,设点使四边形PFMN是菱形,试求实数a

(Ⅲ)如果点A的坐标为,其中,相应线段AM的垂直平分线交x轴于.设数列的前n项和为,证明:当n≥2时,为定值.

查看答案和解析>>

(本题14分)已知椭圆的中心在坐标原点,焦点在轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点轴不垂直的直线交椭圆于两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)当直线的斜率为1时,求的面积;

(Ⅲ)在线段上是否存在点,使得以为邻边的平行四边形是菱形?

若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

在圆上任取一点,过点轴的垂线段为垂足,当点在圆上运动时,线段的中点的轨迹为曲线

(Ⅰ)求曲线的方程;

(Ⅱ)过点的直线与曲线相交于不同的两点, 点在线段的垂直平分线上,且,求的值

 

查看答案和解析>>

在圆上任取一点,过点轴的垂线段为垂足,当点在圆上运动时,线段的中点的轨迹为曲线
(Ⅰ)求曲线的方程;
(Ⅱ)过点的直线与曲线相交于不同的两点, 点在线段的垂直平分线上,且,求的值

查看答案和解析>>


同步练习册答案