由三垂线定理可知. 查看更多

 

题目列表(包括答案和解析)

已知A,B分别是椭圆C1
x2
a2
+
y2
b2
=1的左、右顶点,P是椭圆上异与A,B的任意一点,Q是双曲线C2
x2
a2
-
y2
b2
=1上异与A,B的任意一点,a>b>0.
(I)若P(
5
2
3
),Q(
5
2
,1),求椭圆Cl的方程;
(Ⅱ)记直线AP,BP,AQ,BQ的斜率分别是k1,k2,k3,k4,求证:k1•k2+k3•k4为定值;
(Ⅲ)过Q作垂直于x轴的直线l,直线AP,BP分别交 l于M,N,判断△PMN是否可能为正三角形,并说明理由.

查看答案和解析>>

已知A,B分别是椭圆C1=1的左、右顶点,P是椭圆上异与A,B的任意一点,Q是双曲线C2=1上异与A,B的任意一点,a>b>0.
(I)若P(),Q(,1),求椭圆Cl的方程;
(Ⅱ)记直线AP,BP,AQ,BQ的斜率分别是k1,k2,k3,k4,求证:k1•k2+k3•k4为定值;
(Ⅲ)过Q作垂直于x轴的直线l,直线AP,BP分别交 l于M,N,判断△PMN是否可能为正三角形,并说明理由.

查看答案和解析>>

如图,将一张矩形的纸对折以后略微展开,竖立在桌面上,说明折痕为什么与桌面垂直.

从图中可直观地看出,折痕垂直于对折后的纸与桌面所形成的交线.由直线与平面垂直的判定定理知,折痕与桌面垂直.那么在折痕垂直于纸与桌面的交线未知的情况下,单凭折后的纸与桌面垂直,能否得出折痕与桌面垂直?转化为数学语言,即如果两个相交平面都垂直于第三个平面,那么它们的交线也垂直于第三个平面吗?下面用不同的方法证明.

如图,已知平面α⊥平面β,平面α⊥平面γ,且β∩γ=a,β∩α=l,γ∩α=m.

求证:a⊥α.

查看答案和解析>>

在棱长为的正方体中,是线段的中点,.

(1) 求证:^

(2) 求证://平面

(3) 求三棱锥的表面积.

【解析】本试题考查了线线垂直和线面平行的判定定理和表面积公式的运用。第一问中,利用,得到结论,第二问中,先判定为平行四边形,然后,可知结论成立。

第三问中,是边长为的正三角形,其面积为

因为平面,所以

所以是直角三角形,其面积为

同理的面积为面积为.  所以三棱锥的表面积为.

解: (1)证明:根据正方体的性质

因为

所以,又,所以

所以^.               ………………4分

(2)证明:连接,因为

所以为平行四边形,因此

由于是线段的中点,所以,      …………6分

因为平面,所以∥平面.   ……………8分

(3)是边长为的正三角形,其面积为

因为平面,所以

所以是直角三角形,其面积为

同理的面积为,              ……………………10分

面积为.          所以三棱锥的表面积为

 

查看答案和解析>>


同步练习册答案