题目列表(包括答案和解析)
已知数列的前
项和为
,且
(
N*),其中
.
(Ⅰ) 求的通项公式;
(Ⅱ) 设 (
N*).
①证明: ;
② 求证:.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到
,②由于
,
所以利用放缩法,从此得到结论。
解:(Ⅰ)当时,由
得
. ……2分
若存在由
得
,
从而有,与
矛盾,所以
.
从而由得
得
. ……6分
(Ⅱ)①证明:
证法一:∵∴
∴
∴.…………10分
证法二:,下同证法一.
……10分
证法三:(利用对偶式)设,
,
则.又
,也即
,所以
,也即
,又因为
,所以
.即
………10分
证法四:(数学归纳法)①当时,
,命题成立;
②假设时,命题成立,即
,
则当时,
即
即
故当时,命题成立.
综上可知,对一切非零自然数,不等式②成立. ………………10分
②由于,
所以,
从而.
也即
已知等差数列{an}的首项为4,公差为4,其前n项和为Sn,则数列 {}的前n项和为( )
| A. | | B. | | C. | | D. | |
考点: | 数列的求和;等差数列的性质. |
专题: | 等差数列与等比数列. |
分析: | 利用等差数列的前n项和即可得出Sn,再利用“裂项求和”即可得出数列 { |
解答: | 解:∵Sn=4n+ ∴ ∴数列 { 故选A. |
点评: | 熟练掌握等差数列的前n项和公式、“裂项求和”是解题的关键. |
已知点(
),过点
作抛物线
的切线,切点分别为
、
(其中
).
(Ⅰ)若,求
与
的值;
(Ⅱ)在(Ⅰ)的条件下,若以点为圆心的圆
与直线
相切,求圆
的方程;
(Ⅲ)若直线的方程是
,且以点
为圆心的圆
与直线
相切,
求圆面积的最小值.
【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。
中∵直线与曲线
相切,且过点
,∴
,利用求根公式得到结论先求直线
的方程,再利用点P到直线的距离为半径,从而得到圆的方程。
(3)∵直线的方程是
,
,且以点
为圆心的圆
与直线
相切∴点
到直线
的距离即为圆
的半径,即
,借助于函数的性质圆
面积的最小值
(Ⅰ)由可得,
. ------1分
∵直线与曲线
相切,且过点
,∴
,即
,
∴,或
, --------------------3分
同理可得:,或
----------------4分
∵,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,,
,则
的斜率
,
∴直线的方程为:
,又
,
∴,即
. -----------------7分
∵点到直线
的距离即为圆
的半径,即
,--------------8分
故圆的面积为
. --------------------9分
(Ⅲ)∵直线的方程是
,
,且以点
为圆心的圆
与直线
相切∴点
到直线
的距离即为圆
的半径,即
, ………10分
∴
,
当且仅当,即
,
时取等号.
故圆面积的最小值
.
已知二次函数的二次项系数为
,且不等式
的解集为
,
(1)若方程有两个相等的根,求
的解析式;
(2)若的最大值为正数,求
的取值范围.
【解析】第一问中利用∵f(x)+2x>0的解集为(1,3),
设出二次函数的解析式,然后利用判别式得到a的值。
第二问中,
解:(1)∵f(x)+2x>0的解集为(1,3),
①
由方程
②
∵方程②有两个相等的根,
∴,
即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5
a=-1/5代入①得:
(2)由
由 解得:
故当f(x)的最大值为正数时,实数a的取值范围是
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)设,若对任意
,
,不等式
恒成立,求实数
的取值范围.
【解析】第一问利用的定义域是
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函数的单调递增区间是(1,3);单调递减区间是
第二问中,若对任意不等式
恒成立,问题等价于
只需研究最值即可。
解: (I)的定义域是
......1分
............. 2分
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函数的单调递增区间是(1,3);单调递减区间是
........4分
(II)若对任意不等式
恒成立,
问题等价于,
.........5分
由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,
故也是最小值点,所以; ............6分
当b<1时,;
当时,
;
当b>2时,;
............8分
问题等价于 ........11分
解得b<1 或 或
即
,所以实数b的取值范围是
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com