20. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)二次函数的图象经过三点.

(1)求函数的解析式(2)求函数在区间上的最大值和最小值

查看答案和解析>>

(本小题满分12分)已知等比数列{an}中, 

   (Ⅰ)求数列{an}的通项公式an

   (Ⅱ)设数列{an}的前n项和为Sn,证明:

   (Ⅲ)设,证明:对任意的正整数n、m,均有

查看答案和解析>>

(本小题满分12分)已知函数,其中a为常数.

   (Ⅰ)若当恒成立,求a的取值范围;

   (Ⅱ)求的单调区间.

查看答案和解析>>

(本小题满分12分)

甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为

   (Ⅰ)求甲至多命中2个且乙至少命中2个的概率;

   (Ⅱ)若规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.

查看答案和解析>>

(本小题满分12分)已知是椭圆的两个焦点,O为坐标原点,点在椭圆上,且,圆O是以为直径的圆,直线与圆O相切,并且与椭圆交于不同的两点A、B.

   (1)求椭圆的标准方程;w.w.w.k.s.5.u.c.o.m        

   (2)当时,求弦长|AB|的取值范围.

查看答案和解析>>

一、选择题:(每题5分,共60分)

20080416

二、填空题:每题5分,共20分)

13.   14.;  15.a=-1或a=-;   

16.①④

17.解:(1)

.又.(6分)

(2)由

.(6分)

18.证法一:向量法

证法二:(1)由已知有BC⊥AB,BC⊥B1B,∴BC⊥平面ABB1A1

又A1E在平面ABB1A1内     ∴有BC⊥A1E

(2)取B1C的中点D,连接FD、BD

∵F、D分别是AC1、B1C之中点,∴FD∥A1B1∥BE

∴四边形EFBD为平行四边形    ∴EF∥BD

又BD平面BCC1B1   

∴EF∥面BCC1B1

(3)过B1作B1H⊥CEFH,连BH,又B1B⊥面BAC,B1H⊥CE

∴BH⊥EC    ∴∠B1HB为二面角B1-EC-B平面角

在Rt△BCE中有BE=,BC=,CE=,BH=

又∠A1CA=      ∴BB1=AA1=AC=2   

∴tan∠B1HB=

19.解(1)由已知圆的标准方程为:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)

设圆的圆心坐标为(x,y),

为参数),消参数得圆心的轨迹方程为:x2+y2=a2,(5分)

  (2)有方程组得公共弦的方

程:圆X2+Y2=a2的圆心到公共弦的距离d=,(定值)

∴弦长l=(定值)        (5分)

 

20.(1)合格结果:0,1,2,3   相应月盈利额X=-30,5,40,75

(2)P(X≥40)=P(X=40)+P(X=75)=

(3)

X

-30

5

40

75

P

 

EX=54(元)    ∴6个月平均:6×54=324(元)

21.(1)由已知:   

依题意得:≥0对x∈成立

∴ax-1≥0,对x∈恒成立,即a≥,对x∈恒成立,

∴a≥(max,即a≥1.

(2)当a=1时,,x∈[,2],若x∈,则

若x∈,则,故x=1是函数f(x)在区间[,2]上唯一的极小值点,也就是最小值点,故f(x)min=f(1)=0.

又f()=1-ln2,f(2)=- +ln2,f()-f(2)=-2ln2=

∵e3>2.73=19.683>16,

∴f()-f(2)>0   

∴f()>f(2)  

∴f(x)在[,2]上最大值是f(

∴f(x)在[,2]最大1-ln2,最小0

(3)当a=1时,由(1)知,f(x)=+lnx在

当n>1时,令x=,则x>1     ∴f(x)>f(1)=0

即ln>

22.解:(1)设椭圆方程为(a>b>0)

     ∴椭圆方程

(2) ∵直线∥DM且在y轴上的截距为m,∴y=x+m

与椭圆交于A、B两点

∴△=(2m)2-4(2m2-4)>0-2<m<2(m≠0)

(3)设直线MA、MB斜率分别为k1,k2,则只要证:k1+k2=0

设A(x1,y1),B(x2,y2),则k1=,k2=

由x2+2mx+2m2-4=0得x1+x2=-2m,x1x2=2m2-4

而k1+k2=+= (*)

又y1=x1+m  y2=x2+m

∴(*)分子=(x1+m-1)(x2-2)+( x2+m -1)(x1-2)

=x1x2+(m-2)(x1+x2)-4(m-1)

=2m2-4+(m-2)(-m)-4(m-1)

  =0

∴k1+k2=0,证之.

 


同步练习册答案