可得:在△PAB中,PA2+AB2=PB2=6。
所以PA⊥AB
同理可证PA⊥AD
故PA⊥平面ABCD (4分)
(2)取PE中点M,连接FM,BM,
连接BD交AC于O,连接OE
∵F,M分别是PC,PF的中点,
∴FM∥CE,
又FM面AEC,CE面AEC
∴FM∥面AEC
又E是DM的中点
OE∥BM,OE面AEC,BM面AEC
∴BM∥面AEC且BM∩FM=M
∴平面BFM∥平面ACE
又BF平面BFM,∴BF∥平面ACE (4分)
(3)连接FO,则FO∥PA,因为PA⊥平面ABCD,则FO⊥平面ABCD,所以FO=1,
SㄓACD=1,
∴VFACD=VF――ACD= (4分)
19. (1)由已知圆的标准方程为:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)
设圆的圆心坐标为(x,y),则(为参数),
消参数得圆心的轨迹方程为:x2+y2=a2,…………(5分)
(2)有方程组得公共弦的方程:
圆X2+Y2=a2的圆心到公共弦的距离d=,(定值)
∴弦长l=(定值)
(5分)
20.解:(1),
当时,取最小值,
即.(6分)
(2)令,
由得,(不合题意,舍去).
当变化时,的变化情况如下表:
递增
极大值
递减
在内有最大值.
在内恒成立等价于在内恒成立,
即等价于,
所以的取值范围为.(6分)
21.解:(1),
,.
又,
数列是首项为,公比为的等比数列,.
当时,,
(6分)
(2),
当时,;
当时,,…………①
,………………………②
得:
.
.
又也满足上式,
.(6分)
22.解:(1)由题意椭圆的离心率
∴椭圆方程为……2分
又点在椭圆上
∴椭圆的方程为(4分)
(2)设
由
消去并整理得……6分
∵直线与椭圆有两个交点
,即……8分
又
中点的坐标为……10分
设的垂直平分线方程:
在上
即
……12分
将上式代入得
即或
的取值范围为…………(8分)