如图(1).是等腰直角三角形...分别为.的中点.将沿折起.使在平面上的射影恰为的中点.得到图(2). 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,直三棱柱ABC-A1B1C1的底面积是等腰直角三角形,∠A1C1B1=90°,A1C1=1,AA1=
2
,N、M分别是线段B1B、AC1的中点.
(I)证明:MN∥平面ABC;
(II)求A1到平面AB1C1的距离
(III)求二面角A1-AB1-C1的大小.

查看答案和解析>>

精英家教网如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=45°
(I)求证:EF⊥平面BCE;
(Ⅱ)设线段CD、AE的中点分别为P、M,求证:PM∥平面BCE;
(Ⅲ)求二面角F-BD-A的大小.

查看答案和解析>>

精英家教网如图,正方形ABCD所在的平面与三角形ADE所在平面互相垂直,△AEB是等腰直角三角形,且AE=ED设线段BC、PBC的中点分别为F、M,
求证:(1)FM∥平面ECD;
(2)求二面角E-BD-A的正切值.

查看答案和解析>>

精英家教网如图,已知等腰直角三角形RBC,其中∠RBC=90°,RB=BC=2.点A、D分别是RB、RC的中点,现将△RAD沿着边AD折起到△PAD位置,使PA⊥AB,连接PB、PC.
(1)求证:BC⊥PB;
(2)求二面角A-CD-P的平面角的余弦值.

查看答案和解析>>

精英家教网如图,平面PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E、F、O分别为PA,PB,AC的中点,AC=16,PA=PC=10.
(I)设G是OC的中点,证明:FG∥平面BOE;
(II)证明:在△ABO内存在一点M,使FM⊥平面BOE.

查看答案和解析>>

一.选择题:ABCDC CAACB

解析:

1: M,P表示元素分别为直线和圆的两个集合,它们没有公共元素。故选A。

2:因,取α=-代入sinα>tanα>cotα,满足条件式,则排除A、C、D,故选B。

3:构造特殊函数f(x)=x,虽然满足题设条件,并易知f(x)在区间[-7,-3]上是增函数,且最大值为f(-3)=-5,故选C。

4:题中可写成。联想数学模型:过两点的直线的斜率公式k=,可将问题看成圆(x-2)2+y2=3上的点与坐标原点O连线的斜率的最大值,即得D。

 

5:因纬线弧长>球面距离>直线距离,排除A、B、D,故选C。

 

6:取满足题意的特殊数列,则,故选C。

7:二项式中含有,似乎增加了计算量和难度,但如果设,则待求式子。故选A。

8:去掉题中的修饰语,本题的实质就是学生所熟悉的这样一个题目:三男三女站成一排,男女相间而站,问有多少种站法?因而易得本题答案为。故选A。

9:考虑特殊位置PQ⊥OP时,,所以,故选C。

10:08年农民工次性人均收入为:

又08年农民其它人均收入为1350+160=2150

故08年农民人均总收入约为2405+2150=4555(元)。故选B。

二.填空题:11.25;    12. ;  13.  14.;  15、

解析:11:

12:

13:

14.解:由,得

15.解:∵PA切于点A,B为PO中点,∴AB=OB=OA, ∴,∴,

在△POD中由余弦定理 ,得=

三.解答题:

16.解:(Ⅰ)∵

    ∴-----------------2分

----------------------------4分

  

-------------------------------------------------6分

(Ⅱ)∵

----------------------------------9分

   ∴函数的最小正周期为T=π-----------------------------------------10分

的单调增区间.----------------12分

17.(Ⅰ)证法一:在中,是等腰直角的中位线,

                              ……………………………1分

在四棱锥中,,       ……………2分

平面,                                        ……5分

平面,                           …………7分

证法二:同证法一                              …………2分

                                    ……………………4分

平面,                                      ………5分

平面,                  ……………………7分

(Ⅱ)在直角梯形中,

,                     ……8分

垂直平分           ……10分

三棱锥的体积为:

                ………12分

18.解:由题意可知,图甲图象经过(1,1)和(6,2)两点,

从而求得其解析式为y=0.2x+0.8-----------------------(2分)

图乙图象经过(1,30)和(6,10)两点,

从而求得其解析式为y=-4x+34.------------------------- (4分)

(Ⅰ)当x=2时,y=0.2×2+0.8 =1.2,y= -4×2+34=26,

y?y=1.2×26=31.2.

所以第2年鱼池有26个,全县出产的鳗鱼总数为31.2万只.------------ ---(6分)

 (Ⅱ)第1年出产鱼1×30=30(万只), 第6年出产鱼2×10=20(万只),可见,第6年这个县的鳗鱼养殖业规划比第1年缩小了----------------------------------(8分)

 (Ⅲ)设当第m年时的规模总出产量为n,

那么n=y?y=(0.2m+0.8) (-4m+34)= -0. 8m2+3.6m+27.2

      =-0.8(m2-4.5m-34)=-0.8(m-2.25)2+31.25---------------------------(11分)

因此, .当m=2时,n最大值=31.2.

即当第2年时,鳗鱼养殖业的规模最大,最大产量为31.2万只. --------------(14分)

19.解:(Ⅰ) 由得: ,……(2分)

变形得: 即:, ………(4分)

数列是首项为1,公差为的等差数列. ………(5分)

(Ⅱ) 由(1)得:, ………(7分)

, ………(9分)

(Ⅲ)由(1)知:  ………(11分)

………(14分)

20.解:(Ⅰ)由题意知,动圆圆心Q到点A和到定直线的距离相等,

∴动圆圆心Q的轨迹是以点A为焦点,以直线为准线的抛物线

∴曲线C的方程为。 -------------------------------------------------4分

(Ⅱ)如图,设点,则的坐标为

,∴曲线C在点处的切线方程为: -----------7分

令y=0,得此切线与x轴交点的横坐标,即, ---------10分

∴数列是首项公比为的等比数列, -----12分

 -------------14分

21.解:(Ⅰ)令

……………………………………2分

时,    故上递减.

    故上递增.

所以,当时,的最小值为….……………………………………..4分

(Ⅱ)由,有 即

故 .………………………………………5分

(Ⅲ)证明:要证:

只要证:

 设…………………7分

…………………………………………………….8分

时,

上递减,类似地可证递增

所以的最小值为………………10分

=

=

=

由定理知:  故

即: .…………………………..14分


同步练习册答案