10.已知P是椭圆上的点.F1.F2分别是椭圆的左.右焦点.若.则△F1PF2的面积为 查看更多

 

题目列表(包括答案和解析)

已知P是椭圆上的点,F1、F2分别是椭圆的左、右焦点,若,则的面积为(  )

       A、3                  B、2                  C、                    D、

 

 

查看答案和解析>>

已知P是椭圆上的点,F1、F2分别是椭圆的左、右焦点,若∠F1PF2=60°,则△F1PF2的面积为   

查看答案和解析>>

已知P是椭圆上的点,F1、F2分别是椭圆的左、右焦点,若,则的面积为( )
A.3B.2C.D.

查看答案和解析>>

已知点P是椭圆上一点,F1、F2分别是椭圆的左、右焦点,点Q在F1P上,且|PQ|=|PF2|,则Q点坐标为   

查看答案和解析>>

已知P是椭圆+=1(a>b>0)上的点,P与两焦点F1、F2的连线互相垂直,且点P到两准线的距离分别为d1=6和d2=12,求椭圆方程.

查看答案和解析>>

一、选择题:

DDCBA  BBDDA

ycy

11.0     12.(±1,0)    13.1    14.②④      15 706

三、解答题:

16.解:    2分

(Ⅰ)                                                        4分

(Ⅱ)由

单调递增区间为                    8分

(Ⅲ)

                          12分

17.解:(Ⅰ)                        6分

18.解:(Ⅰ)证明:∵PA⊥平面ABCD   ∴PA⊥BD

∵ABCD为正方形   ∴AC⊥BD

∴BD⊥平面PAC又BD在平面BPD内,

∴平面PAC⊥平面BPD      6分

(Ⅱ)解法一:在平面BCP内作BN⊥PC垂足为N,连DN,

∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;

∴∠BND为二面角B―PC―D的平面角,

在△BND中,BN=DN=,BD=

∴cos∠BND =                             12分

解法二:以A为原点,AB、AD、AP所在直线分别为x轴、y轴、z轴建立空间坐标系如图,在平面BCP内作BN⊥PC垂足为N连DN,

∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;

∴∠BND为二面角B―PC―D的平面角                                8分

                          10分

           12分

解法三:以A为原点,AB、AD、AP所在直线分别为x轴、y轴、z轴建立如图空间坐标系,作AM⊥PB于M、AN⊥PD于N,易证AM⊥平面PBC,AN⊥平面PDC,

                            10分

∵二面角B―PC―D的平面角与∠MAN互补

∴二面角B―PC―D的余弦值为                                 12分

19.解:(Ⅰ)

          4分

又∵当n = 1时,上式也成立,             6分

(Ⅱ)              8分

     ①

     ②

①-②得:

                                             12分

20.解:(Ⅰ)由MAB的中点,

AB两点的坐标分别为

M点的坐标为                                 4分

M点的直线l上:

                                                  7分

(Ⅱ)由(Ⅰ)知,不妨设椭圆的一个焦点坐标为关于直线l

上的对称点为

则有                       10分

由已知

,∴所求的椭圆的方程为                       12分

21.解:(Ⅰ)∵函数f(x)图象关于原点对称,∴对任意实数x

                            2分

                     4分

(Ⅱ)当时,图象上不存在这样的两点使结论成立               5分

假设图象上存在两点,使得过此两点处的切线互相垂直,则由

,知两点处的切线斜率分别为:

此与(*)相矛盾,故假设不成立                                   9分

(Ⅲ)证明:

在[-1,1]上是减函数,且

∴在[-1,1]上,时,

    14分


同步练习册答案