题目列表(包括答案和解析)
如图,在四棱锥中,⊥底面,底面为正方形,,,分别是,的中点.
(I)求证:平面;
(II)求证:;
(III)设PD=AD=a, 求三棱锥B-EFC的体积.
【解析】第一问利用线面平行的判定定理,,得到
第二问中,利用,所以
又因为,,从而得
第三问中,借助于等体积法来求解三棱锥B-EFC的体积.
(Ⅰ)证明: 分别是的中点,
,. …4分
(Ⅱ)证明:四边形为正方形,.
, .
, ,
.,. ………8分
(Ⅲ)解:连接AC,DB相交于O,连接OF, 则OF⊥面ABCD,
∴
如图所示的长方体中,底面是边长为的正方形,为与的交点,,是线段的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求二面角的大小.
【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用,又平面,平面,∴平面由,,又,∴平面. 可得证明
(3)因为∴为面的法向量.∵,,
∴为平面的法向量.∴利用法向量的夹角公式,,
∴与的夹角为,即二面角的大小为.
方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接,则点、,
∴,又点,,∴
∴,且与不共线,∴.
又平面,平面,∴平面.…………………4分
(Ⅱ)∵,
∴,,即,,
又,∴平面. ………8分
(Ⅲ)∵,,∴平面,
∴为面的法向量.∵,,
∴为平面的法向量.∴,
∴与的夹角为,即二面角的大小为
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com