令则得. 又 查看更多

 

题目列表(包括答案和解析)

将参加夏令营的720名学生编号为:001,002···720,采用系统抽样方法抽取一个容量为60的样本,且随机抽得的第一个号码为004.又这720名学生分住在三个营区,从001到360在第I营区,从361到640在第II营区,从641到720在第Ⅲ营区,则三个营区被抽中的人数依次为(   )

   A.30,23,7               B.30,24,6       C.30,22,8              D.31,23,6

查看答案和解析>>

已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.

(1)求f(x)的解析式;

(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依题意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)设切点为(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)

又切线过点A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

则g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.

∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2

画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,

所以m的取值范围是(-6,2).

 

查看答案和解析>>

7、将参加夏令营的720名学生编号为:001,002…720,采用系统抽样方法抽取一个容量为60的样本,且随机抽得的第一个号码为004.又这720名学生分住在三个营区,从001到360在第I营区,从361到640在第II营区,从641到720在第Ⅲ营区,则三个营区被抽中的人数依次为(  )

查看答案和解析>>

将参加夏令营的720名学生编号为:001,002…720,采用系统抽样方法抽取一个容量为60的样本,且随机抽得的第一个号码为004.又这720名学生分住在三个营区,从001到360在第I营区,从361到640在第II营区,从641到720在第Ⅲ营区,则三个营区被抽中的人数依次为(  )
A.30,23,7B.30,24,6C.30,22,8D.31,23,6

查看答案和解析>>

将参加夏令营的720名学生编号为:001,002…720,采用系统抽样方法抽取一个容量为60的样本,且随机抽得的第一个号码为004.又这720名学生分住在三个营区,从001到360在第I营区,从361到640在第II营区,从641到720在第Ⅲ营区,则三个营区被抽中的人数依次为( )
A.30,23,7
B.30,24,6
C.30,22,8
D.31,23,6

查看答案和解析>>


同步练习册答案