20.(1)解:由椭圆方程及双曲线方程可得点B(0.2).直线l的方程是. .且AC在直线l上运动. 可设.则AC的垂直平分线方程为 ① AB的垂直平分线方程为 ② 查看更多

 

题目列表(包括答案和解析)

已知椭圆C1的方程为
x2
4
+y2=1,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
(Ⅰ)求双曲线C2的方程;
(Ⅱ)若直线l:y=kx+
2
与椭圆C1及双曲线C2都恒有两个不同的交点,且l与C2的两个交点A和B满足
OA
OB
<6(其中O为原点),求k的取值范围.

查看答案和解析>>

(2013•浦东新区二模)(1)设椭圆C1
x2
a2
+
y2
b2
=1
与双曲线C29x2-
9y2
8
=1
有相同的焦点F1、F2,M是椭圆C1与双曲线C2的公共点,且△MF1F2的周长为6,求椭圆C1的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆D”的方程为y2=
4x            (0≤x≤3)
-12(x-4)  (3<x≤4)
.设“盾圆D”上的任意一点M到F(1,0)的距离为d1,M到直线l:x=3的距离为d2,求证:d1+d2为定值; 
(3)由抛物线弧E1:y2=4x(0≤x≤
2
3
)与第(1)小题椭圆弧E2
x2
a2
+
y2
b2
=1
2
3
≤x≤a
)所合成的封闭曲线为“盾圆E”.设过点F(1,0)的直线与“盾圆E”交于A、B两点,|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),试用cosα表示r1;并求
r1
r2
的取值范围.

查看答案和解析>>

已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点。

(1) 求双曲线C2的方程;

(2) 若直线l与椭圆C1及双曲线C2恒有两个不同的交点,且lC2的两个交点AB满足(其中O为原点),求k的取值范围。

 

查看答案和解析>>

(本小题满分12分)

已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.

   (1)求双曲线C2的方程;

(2)若直线与椭圆C1及双曲线C2都恒有两个不同的交点,且lC2的两个交点AB满足(其中O为原点),求k的取值范围.

查看答案和解析>>

已知椭圆C1的方程为+y2=1,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
(Ⅰ)求双曲线C2的方程;
(Ⅱ)若直线l:y=kx+与椭圆C1及双曲线C2都恒有两个不同的交点,且l与C2的两个交点A和B满足<6(其中O为原点),求k的取值范围.

查看答案和解析>>


同步练习册答案