题目列表(包括答案和解析)
(12分)如图,在梯形ABCD中,平面平面ABCD,四边形ACFE是矩形,AE=a,点M在线段EF上.
(Ⅰ)求证:平面ACFE;
(Ⅱ)当EM为何值时,平面BDF?证明你的结论;
(Ⅲ)求二面角B―EF―D的大小.
如图,在梯形ABCD中,AB//CD,AD=DC=CB=a,,四边形ACFE是矩形,且平面平面ABCD,点M在线段EF上.
(1)求证:平面ACFE;
(2)当EM为何值时,AM//平面BDF?证明你的结论.
1.C 2.B 3.B 4.D 5.C 6.A 7.B 8.B 9.D 10.C
11. 12.1 13. 14.4 15.
16.当a>1时,有,∴,∴,∴,∴当0<a<1时,有,∴.
综上,当a>1时,;当0<a<1时,
17.(Ⅰ)有0枚正面朝上的概率为,有1枚正面朝上的概率为:
∴
(Ⅱ)出现奇数枚正面朝上的概率为:
∴出现偶数枚正面朝上的概率为,∴概率相等.
18.(Ⅰ)在梯形ABCD中,∵,
∴四边形ABCD是等腰梯形,
且
∴,∴
又∵平面平面ABCD,交线为AC,∴平面ACFE.
(Ⅱ)当时,平面BDF. 在梯形ABCD中,设,连结FN,则
∵而,∴∴MFAN,
∴四边形ANFM是平行四边形. ∴
又∵平面BDF,平面BDF. ∴平面BDF.
19.(Ⅰ)设椭圆方程为,则有,∴a=6, b=3.
∴椭圆C的方程为
(Ⅱ),设点,则
∴,
∵,∴,∴∴的最小值为6.
20.(Ⅰ)设,,
∴在单调递增.
(Ⅱ)当时,,又,,即;
当时,,,由,得或.
的值域为
(Ⅲ)当x=0时,,∴x=0为方程的解.
当x>0时,,∴,∴
当x<0时,,∴,∴
即看函数
与函数图象有两个交点时k的取值范围,应用导数画出的大致图象,∴,∴
21.(Ⅰ)令n=1有,,∴,∴.
(Ⅱ)∵……① ∴当时,有……②
①-②有,
∴
将以上各式左右两端分别相乘,得,∴
当n=1,2时也成立,∴.
(Ⅲ),当时,
,
∵
∴
当时,
当时,
当时,
∴
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com