.设点P.Q是椭圆C上的两个动点.满足.求的最小值. 查看更多

 

题目列表(包括答案和解析)

已知点P(-3,0),点A在y轴上,点Q在x轴非负半轴上,点M在直线AQ上,满足·=0,=-.

(1)当点A在y轴上移动时,求动点M的轨迹C的方程;

(2)设轨迹C的准线为l,焦点为F,过F作直线m交轨迹C于G,H两点,过点G作平行于轨迹C的对称轴的直线n,且n∩l=E,试问点E,O,H(O为坐标原点)是否在同一条直线上?并说明理由.

查看答案和解析>>

已知点P(-3,0),点A在y轴上,点Q在x轴非负半轴上,点M在直线AQ上,满足·=0,=-.
(1)当点A在y轴上移动时,求动点M的轨迹C的方程;
(2)设轨迹C的准线为l,焦点为F,过F作直线m交轨迹C于G,H两点,过点G作平行于轨迹C的对称轴的直线n,且n∩l=E,试问点E,O,H(O为坐标原点)是否在同一条直线上?并说明理由.

查看答案和解析>>

精英家教网已知点P (4,4),圆C:(x-m)2+y2=5(m<3)与椭圆E:
x2
a2
+
y2
b2
=1
(a>0,b>0)的一个公共点为A(3,1),F1,F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(1)求m的值与椭圆E的方程.
(2)设D为直线PF1与圆C的切点,在椭圆E上是否存在点Q,使△PDQ是以PD为底的等腰三角形?若存在,请指出共有几个这样的点?并说明理由.

查看答案和解析>>

已知点E、F的坐标分别是(-2,0)、(2,0),直线EP、FP相交于点P,且它们的斜率之积为-
1
4

(1)求证:点P的轨迹在一个椭圆C上,并写出椭圆C的方程;
(2)设过原点O的直线AB交(1)中的椭圆C于点A、B,定点M的坐标为(1,
1
2
)
,试求△MAB面积的最大值,并求此时直线AB的斜率kAB
(3)反思(2)题的解答,当△MAB的面积取得最大值时,探索(2)题的结论中直线AB的斜率kAB和OM所在直线的斜率kOM之间的关系.由此推广到点M位置的一般情况或椭圆的一般情况(使第(2)题的结论成为推广后的一个特例),试提出一个猜想或设计一个问题,尝试研究解决.
[说明:本小题将根据你所提出的猜想或问题的质量分层评分].

查看答案和解析>>

已知点P(4,4),圆C:(x-m)2+y2=5(m<3)与椭圆E:(a>b>0)有一个公共点A(3,1),F1,F2分别是椭圆的左,右焦点,直线PF1与圆C相切。

(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求的取值范围。

查看答案和解析>>

1.C  2.B  3.B  4.D  5.C   6.A  7.B  8.B  9.D  10.C

11.   12.1                13.        14.4            15.

16.当a>1时,有,∴,∴,∴,∴当0<a<1时,有,∴.

综上,当a>1时,;当0<a<1时,

17.(Ⅰ)有0枚正面朝上的概率为,有1枚正面朝上的概率为:

(Ⅱ)出现奇数枚正面朝上的概率为:

∴出现偶数枚正面朝上的概率为,∴概率相等.

18.(Ⅰ)在梯形ABCD中,∵

 

 

∴四边形ABCD是等腰梯形,

,∴

又∵平面平面ABCD,交线为AC,∴平面ACFE.

(Ⅱ)当时,平面BDF. 在梯形ABCD中,设,连结FN,则

,∴∴MFAN,

∴四边形ANFM是平行四边形. ∴

又∵平面BDF,平面BDF. ∴平面BDF.

19.(Ⅰ)设椭圆方程为,则有,∴a=6, b=3.

∴椭圆C的方程为

(Ⅱ),设点,则

,∴,∴的最小值为6.

20.(Ⅰ)设

单调递增.

(Ⅱ)当时,,又,即

      当时,,由,得.

的值域为

(Ⅲ)当x=0时,,∴x=0为方程的解.

当x>0时,,∴,∴

当x<0时,,∴,∴

即看函数

与函数图象有两个交点时k的取值范围,应用导数画出的大致图象,∴,∴

 

21.(Ⅰ)令n=1有,,∴,∴.

 

(Ⅱ)∵……① ∴当时,有……②

①-②有

将以上各式左右两端分别相乘,得,∴

当n=1,2时也成立,∴.

(Ⅲ),当时,

时,

时,

时,

 

 

 

 


同步练习册答案