(Ⅰ)求, 查看更多

 

题目列表(包括答案和解析)

 

(Ⅰ)求

(Ⅱ)当时,恒有成立,求t的取值范围;

(Ⅲ)当0<a≤时,试比较f(1)+f(2)+…+f(n)与的大小,并说明理由.

 

 

查看答案和解析>>


(Ⅰ)求;   
(Ⅱ)若,试确定实数的取值范围

查看答案和解析>>

20、(Ⅰ)求y=4x-2x+1的值域;
(Ⅱ)关于x的方程4x-2x+1+a=0有解,求实数a的取值范围.

查看答案和解析>>

(Ⅰ)求函数y=log3(1+x)+
3-4x
的定义域;
(Ⅱ)当0<a<1时,证明函数y=ax在R上是减函数.

查看答案和解析>>

(Ⅰ)求证
2
-
3
6
-
7

(Ⅱ)△ABC的三边a,b,c的倒数成等差数列,求证B<
π
2

查看答案和解析>>

1.C  2.B  3.B  4.D  5.C   6.A  7.B  8.B  9.D  10.C

11.   12.1                13.        14.4            15.

16.当a>1时,有,∴,∴,∴,∴当0<a<1时,有,∴.

综上,当a>1时,;当0<a<1时,

17.(Ⅰ)有0枚正面朝上的概率为,有1枚正面朝上的概率为:

(Ⅱ)出现奇数枚正面朝上的概率为:

∴出现偶数枚正面朝上的概率为,∴概率相等.

18.(Ⅰ)在梯形ABCD中,∵

 

 

∴四边形ABCD是等腰梯形,

,∴

又∵平面平面ABCD,交线为AC,∴平面ACFE.

(Ⅱ)当时,平面BDF. 在梯形ABCD中,设,连结FN,则

,∴∴MFAN,

∴四边形ANFM是平行四边形. ∴

又∵平面BDF,平面BDF. ∴平面BDF.

19.(Ⅰ)设椭圆方程为,则有,∴a=6, b=3.

∴椭圆C的方程为

(Ⅱ),设点,则

,∴,∴的最小值为6.

20.(Ⅰ)设

单调递增.

(Ⅱ)当时,,又,即

      当时,,由,得.

的值域为

(Ⅲ)当x=0时,,∴x=0为方程的解.

当x>0时,,∴,∴

当x<0时,,∴,∴

即看函数

与函数图象有两个交点时k的取值范围,应用导数画出的大致图象,∴,∴

 

21.(Ⅰ)令n=1有,,∴,∴.

 

(Ⅱ)∵……① ∴当时,有……②

①-②有

将以上各式左右两端分别相乘,得,∴

当n=1,2时也成立,∴.

(Ⅲ),当时,

时,

时,

时,

 

 

 

 


同步练习册答案