A.0 B.1 C.2 D.3 第Ⅱ卷(非选择题 共100分) 查看更多

 

题目列表(包括答案和解析)

(2012•湖北模拟)某校高二年级共有学生1000名,其中走读生750名,住宿生250名,现从该年级采用分层抽样的方法从该年级抽取n名学生进行问卷调查,根据问卷取得了这n名同学每天晚上有效学习时间(单位:分钟)的数据,按照以下区间分为八组:[0,30),[30,60),[60,90),[90,120),[120,150),[150,180),[180,210),[210.240),得到频率分布直方图如图,已知抽取的学生中每天晚上有效学习时间少于60分钟的人数为5人.
(1)求n的值并求有效学习时间在[90,120)内的频率;
(2)如果把“学生晚上有效时间达到两小时”作为是否充分利用时间的标准,对抽取的n名学生,下列2×2列联表,问:是否有95%的把握认为学生利用时间是否充分与走读、住宿有关?
利用时间充分 利用时间不充分 合计
走读生 50 a
75
75
住校生 b 15
25
25
合计
60
60
40 n
(3)若在第①组、第②组、第⑦组、第⑧组中共抽出3人调查影响有效利用时间的原因,记抽到“有效学习时间少于60分钟”的学生人数为X,求X的分布列及期望.
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

参考列表:

P(K2≥k0
0.50 0.40 0.25 0.15 0.10 0.05 0.025

k0
0.455 0.708 1.323 2.072 2.706 3.841 5.024

查看答案和解析>>

(2013•韶关二模)以下四个命题
①在一次试卷分析中,从每个试室中抽取第5号考生的成绩进行统计,是简单随机抽样;
②样本数据:3,4,5,6,7的方差为2;
③对于相关系数r,|r|越接近1,则线性相关程度越强;
④通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下列联表:

总计
走天桥 40 20 60
走斑马线 20 30 50
总计 60 50 110
附表:
P(K2≥k) 0.05 0.010 0.001
k 3.841 6.635 10.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
可得,k2=
110×(40×30-20×20)
60×50×60×50
=7.8

则有99%以上的把握认为“选择过马路方式与性别有关”.其中正确的命题序号是
②③④
②③④

查看答案和解析>>

某校高二年级共有学生1000名,其中走读生750名,住宿生250名,现从该年级采用分层抽样的方法从该年级抽取n名学生进行问卷调查.根据问卷取得了这n名同学每天晚上有效学习时间(单位:分钟)的数据,按照以下区间分为八组:
①[0,30),②[30,60),③[60,90),④[90,120),
⑤[120,150),⑥[150,180),⑦[180,210),⑧[210,240),
得到频率分布直方图如下.已知抽取的学生中每天晚上有效学习时间少于60分钟的人数为5人;
(1)求n的值并补全下列频率分布直方图;
(2)如果把“学生晚上有效时间达到两小时”作为是否充分利用时间的标准,对抽取的n名学生,完成下列2×2列联表:
利用时间充分 利用时间不充分 总计
走读生 50 25 75
住宿生 10 15 25
总计 60 40 100
是否有95%的把握认为学生利用时间是否充分与走读、住宿有关?
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

参考列表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024
(3)若在第①组、第②组、第⑦组、第⑧组中共抽出3人调查影响有效利用时间的原因,记抽到“有效学习时间少于60分钟”的学生人数为X,求X的分布列及期望.

查看答案和解析>>

(山东卷文4)给出命题:若函数是幂函数,则函数的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是(    )

A.3                    B.2               C.1               D.0

查看答案和解析>>

(山东卷文4)给出命题:若函数是幂函数,则函数的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是(    )

A.3                    B.2               C.1               D.0

查看答案和解析>>


同步练习册答案