题目列表(包括答案和解析)
(本小题满分14分)
已知函数。
(1)证明:
(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m
(3)设数列满足:,设,
若(2)中的满足对任意不小于2的正整数,恒成立,
试求的最大值。
(本小题满分14分)已知,点在轴上,点在轴的正半轴,点在直线上,且满足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)当点在轴上移动时,求动点的轨迹方程;
(Ⅱ)过的直线与轨迹交于、两点,又过、作轨迹的切线、,当,求直线的方程.(本小题满分14分)设函数
(1)求函数的单调区间;
(2)若当时,不等式恒成立,求实数的取值范围;w.w.w.k.s.5.u.c.o.m
(3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围。(本小题满分14分)
已知,其中是自然常数,
(1)讨论时, 的单调性、极值;w.w.w.k.s.5.u.c.o.m
(2)求证:在(1)的条件下,;
(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.
(本小题满分14分)
设数列的前项和为,对任意的正整数,都有成立,记。
(I)求数列的通项公式;
(II)记,设数列的前项和为,求证:对任意正整数都有;
(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。
一、选择题BBCAA BBAAD
11、-6 12、 13、4 14、 15、
16.解:(1)在中,由,得……………………2分
又由正弦定理 ………3分 得:………………4分
(2)由余弦定理:得:……6分
即,解得或(舍去),所以………………8分
所以,……………10分
,即…………………… ……… ……12分
18、(本小题满分14分)
(1)连接BD,由已知有
得………………………………(1分)
又由ABCD是正方形,得:…(2分)
∵与BD相交,∴…………………………(3分)
(2)延长DC至G,使CG=EB,,连结BG、D
,∴四边形EBGC是平行四边形.
∴BG∥EC. ∴就是异面直线BD1与CE所成角…………………………(5分)
在中, …………………(6分)
异面直线 与CE所成角的余弦值是 ……………………………(8分)
(3)∵ ∴
又∵ ∴ 点E到的距离 ……………(9分)
有: , ………………(11分)
又由 , 设点B到平面的距离为,
则:
有: …………………………………(13分)
所以:点B到平面的距离为。……………(14分)
19.解:(1)由题意可知当
……3分
每件产品的销售价格为……………………………4分
∴2009年的利润
………………… 7分
(2),……………………………11分
(万元)13分
答:(略)…………………………………………………………………… 14分
20、解:(Ⅰ)圆, 半径
QM是P的中垂线,连结AQ,则|AQ|=|QP|
又,
根据椭圆的定义,点Q轨迹是以C(-,0),A(,0)为焦点,长轴长为2 的
椭圆,………2分
由因此点Q的轨迹方程为………………4分
(Ⅱ)(1)证明:当直线l垂直x轴时,由题意知:
不妨取代入曲线E的方程得:
即G(,),H(,-)有两个不同的交点,………………5分
当直线l不垂直x轴时,设直线l的方程为:
由题意知:
由
∴直线l与椭圆E交于两点, 综上,直线l必与椭圆E交于两点…………8分
(2)由(1)知当直线l垂直x轴时,
………………9分
当直线l不垂直x轴时
设(1)知
…………………………10分
当且仅当,则取得“=”
……………………12分
当k=0时, 综上,△OGH的面积的最小值为…14分
21.解:(1)在已知式中,当时,
∵ ∴…………2分
当时, ① ②
①-②得,
∵ ∴= ③
∵适合上式…………4分 当时, ④
③-④得:
∵ ∴∴数列是等差数列,首项为1,公差为1,可得
(2)假设存在整数,使得对任意 ,都有.
∵ ∴
∴
∴ ⑤……………………………………………8分
当()时,⑤式即为 ⑥
依题意,⑥式对都成立,∴λ<1……………………………………10分
当()时,⑤式即为 ⑦
依题意,⑦式对都成立, ∴……………12分
∴∴存在整数,使得对任意,都有…14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com