已知函数 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=4sin(2x-
π
3
)+1
,给定条件p:
π
4
≤x≤
π
2
,条件q:-2<f(x)-m<2,若p是q的充分条件,则实数m的取值范围为
 

查看答案和解析>>

已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则f(f(
52
))的值是
 

查看答案和解析>>

已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求实数k的范围;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三个不同的实数解,求实数k的范围.

查看答案和解析>>

8、已知函数y=f(x)(x∈R)满足f(x+1)=f(x-1),且x∈[-1,1]时,f(x)=x2,则函数y=f(x)与y=log5x的图象的交点个数为(  )

查看答案和解析>>

已知函数f(x)=
3-x,x>0
x2-1.x≤0
,则f[f(-2)]=
 

查看答案和解析>>

一、选择题

C B B A B   A A A DD    C C

二、填空题

13.                               14.  ―4                     15. 2880                     16.①③

17.解,由题意知,在甲盒中放一球概率为,在乙盒放一球的概率为   ….3分

①当n=3时,的概率为    …6分

时,有

它的概率为     ….12分

18.解: (1)解:在中  

                                                 2分

    4分

 

      

                                                       6分

 

(2)=

     12分

 

19. (法一)(1)证明:取中点,连接

       ∵△是等边三角形,∴

       又平面⊥平面

       ∴⊥平面,∴在平面内射影是

       ∵=2,,

       ∴△∽△,∴

       又°,∴°,

       ∴°,∴

       由三垂线定理知        ……….(6分)

(2)取AP的中点E及PD的中点F,连ME、CF则CFEM为平行四边形,CF平面PAD所以ME平面PAD,所以平面MPA平面PAD所以二面角M―PA―D为900.(12分)

20.解:(1)

                  2分

 

-1

(x)

-

0

+

0

-

(x)

极小值0

极大值

                               6分

 

(2)

                                         8分

 

                                                              12分

 

21.Ⅰ)由题知点的坐标分别为

于是直线的斜率为

所以直线的方程为,即为.…………………4分

 

(Ⅱ)设两点的坐标分别为

所以

于是

到直线的距离

所以.

因为,于是

所以的面积范围是.         …………………………………8分

(Ⅲ)由(Ⅱ)及,得

于是).

所以

所以为定值.               ……………………………………………12分

22.解(Ⅰ)由得,

数列{an}的通项公式为      4分

(Ⅱ)

      ①

 

      ②

①―②得

=

 

即数列的前n项和为           9分

(Ⅲ)解法1:不等式恒成立,

对于一切的恒成立

,当k>4时,由于对称轴,且而函数是增函数,不等式恒成立

即当k<4时,不等式对于一切的恒成立       14分

解法2:bn=n(2n-1),不等式恒成立,即对于一切恒成立

而k>4

恒成立,故当k>4时,不等式对于一切的恒成立 (14分)

 


同步练习册答案