(2)当时, 若求的值. 查看更多

 

题目列表(包括答案和解析)

若A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当x>2时,点P(x,0)存在无穷多条“相关弦”.给定x0>2.
(I)证明:点P(x0,0)的所有“相关弦”中的中点的横坐标相同;
(II)试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用x0表示):若不存在,请说明理由.

查看答案和解析>>

若向量
m
=(
3
sinωx,0)
n
=(cosωx,-sinωx)(ω>0)
,在函数f(x)=
m
•(
m
+
n
)+t
的图象中,对称中心到对称轴的最小距离为
π
4
,且当x∈[0,
π
3
]时,f(x)
的最大值为1.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

20、若有穷数列a1,a2…an(n是正整数),满足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整数,且1≤i≤n),就称该数列为“对称数列”.
(1)已知数列{bn}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11,试写出{bn}的每一项
(2)已知{cn}是项数为2k-1(k≥1)的对称数列,且ck,ck+1…c2k-1构成首项为50,公差为-4的等差数列,数列{cn}的前2k-1项和为S2k-1,则当k为何值时,S2k-1取到最大值?最大值为多少?
(3)对于给定的正整数m>1,试写出所有项数不超过2m的对称数列,使得1,2,22…2m-1成为数列中的连续项;当m>1500时,试求其中一个数列的前2008项和S2008

查看答案和解析>>

若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值为-
43

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若f(x)=k有3个解,求实数k的取值范围.

查看答案和解析>>

若函数y=f(x)在区间[a,b]上是连续的、单调的函数,且满足f(a)•f(b)<0,则函数y=f(x)在区间[a,b]上有唯一的零点”.对于函数f(x)=-x3+x2+x+m,
(1)当m=0时,讨论函数f(x)=-x3+x2+x+m在定义域内的单调性并求出极值;
(2)若函数f(x)=-x3+x2+x+m有三个零点,求实数m的取值范围.

查看答案和解析>>

一、选择题(每小题5分,共50分)

题号

1

2

3

4

5

6

7

8

9

10

答案

B

A

B

B

C

C

A

D

C

D

 

二、填空题(每小题5分,共20分)

11.     8     ;              12. AC⊥BD ( ABCD是正方形或菱形); 

13.         ;              14.           ;

三、解答题(本大题共6小题,共80分. 解答应写出文字说明、证明过程或演算步骤)

15.(本小题满分12分)

解:(1)           …………………………1分

      ………………………………2分

.      ………………………………………4分

的最小正周期是.      …………………………………6分

(2)由      …………………….8分

,∴ ∴     …………10分

       ………………………………………………12分

16.(本小题满分12分)

解:(1)当时,,对任意

      为偶函数   ……………………3分

      当时,

      取,得    

        函数既不是奇函数,也不是偶函数……6分

(2)解法一:要使函数上为增函数等价于上恒成立                              ……………8分

上恒成立,故上恒成立

                   …………………………………10分

∴  的取值范围是           ………………………………12分

解法二:设

    ………8分 

    要使函数上为增函数,必须恒成立

    ,即恒成立   …………………………………10分

    又  

    的取值范围是       ………………………………12分

17.(本小题满分14分)

证明: (1)取PC的中点G,连结FG、EG

∴FG为△CDP的中位线  ∴FGCD……1分

∵四边形ABCD为矩形,E为AB的中点

∴ABCD     ∴FGAE

∴四边形AEGF是平行四边形   ………………2分

∴AF∥EG                       ………3分

又EG平面PCE,AF平面PCE  ………4分

∴AF∥平面PCE   ………………………………………5分

     (2)∵ PA⊥底面ABCD

∴PA⊥AD,PA⊥CD,又AD⊥CD,PAAD=A

∴CD⊥平面ADP

又AF平面ADP         ∴CD⊥AF ……………………………… 6分

直角三角形PAD中,∠PDA=45°

∴△PAD为等腰直角三角形   ∴PA=AD=2   …………………………  7分

∵F是PD的中点

∴AF⊥PD,又CDPD=D

∴AF⊥平面PCD                    ………………………………  8分

∵AF∥EG

∴EG⊥平面PCD                    ……………………………  9分

又EG平面PCE

平面PCE⊥平面PCD                 …………………………… 10分

(3)三棱锥C-BEP即为三棱锥P-BCE     ……………………………11分

PA是三棱锥P-BCE的高,

Rt△BCE中,BE=1,BC=2,

∴三棱锥C-BEP的体积

VC-BEP=VP-BCE= … 14分

18.(本小题满分14分)

解:(1)由已知得          解得.…………………1分

    设数列的公比为,由,可得

,可知,即,      …………………4分

解得

由题意得.  .………………………………………… 6分

故数列的通项为.  … ……………………………………8分

(2)由于    由(1)得

    =  ………………………………………10分

    又

    是首项为公差为的等差数列            ……………12分

   

        …………………………14分

19.(本小题满分14分)

解:(1)如图,设为动圆圆心, ,过点作直线的垂线,垂足为,由题意知:             ……………………………………2分

即动点到定点与到定直线的距离相等,

由抛物线的定义知,点的轨迹为抛物线,其中为焦点,            

为准线, 

∴动圆圆心的轨迹方程为     ……………………………………5分

(2)由题可设直线的方程为

   

   △    ………………………………………………7分

,则  ………………………9分

   由,即 ,于是,……11分

   ,解得(舍去),  …………………13分

,   ∴ 直线存在,其方程为       ……………14分

20.(本小题满分14分)

解:(1)由已知,得,比较两边系数,

.      ……………………4分

   (2)令,要有三个不等的实数根,则函数

一个极大值和一个极小值,且极大值大于0,极小值小于0.  …………5分

由已知,得有两个不等的实根

     得.……… 6分

,将代入(1)(3),有,又

,              ………8分

,且处取得极大值,在处取得极小值10分      故要有三个不等的实数根,

则必须                 ……………… 12分

  解得.                            ………………… 14分

 

 


同步练习册答案