题目列表(包括答案和解析)
(本小题满分14分)
已知函数。
(1)证明:
(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m
(3)设数列满足:,设,
若(2)中的满足对任意不小于2的正整数,恒成立,
试求的最大值。
(本小题满分14分)已知,点在轴上,点在轴的正半轴,点在直线上,且满足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)当点在轴上移动时,求动点的轨迹方程;
(Ⅱ)过的直线与轨迹交于、两点,又过、作轨迹的切线、,当,求直线的方程.(本小题满分14分)设函数
(1)求函数的单调区间;
(2)若当时,不等式恒成立,求实数的取值范围;w.w.w.k.s.5.u.c.o.m
(3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围。(本小题满分14分)
已知,其中是自然常数,
(1)讨论时, 的单调性、极值;w.w.w.k.s.5.u.c.o.m
(2)求证:在(1)的条件下,;
(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.
(本小题满分14分)
设数列的前项和为,对任意的正整数,都有成立,记。
(I)求数列的通项公式;
(II)记,设数列的前项和为,求证:对任意正整数都有;
(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。
一、选择题(每小题5分,共50分)
题号
1
2
3
4
5
6
7
8
9
10
答案
B
A
B
B
C
C
A
D
C
D
二、填空题(每小题5分,共20分)
11. 8 ; 12. AC⊥BD ( ABCD是正方形或菱形);
13. ; 14. ;
三、解答题(本大题共6小题,共80分. 解答应写出文字说明、证明过程或演算步骤)
15.(本小题满分12分)
解:(1) …………………………1分
………………………………2分
. ………………………………………4分
的最小正周期是. …………………………………6分
(2)由得 …………………….8分
∵,∴ ∴ …………10分
∴ ………………………………………………12分
16.(本小题满分12分)
解:(1)当时,,对任意
为偶函数 ……………………3分
当时,
取,得
函数既不是奇函数,也不是偶函数……6分
(2)解法一:要使函数在上为增函数等价于在上恒成立 ……………8分
即在上恒成立,故在上恒成立
∴ …………………………………10分
∴ 的取值范围是 ………………………………12分
解法二:设
………8分
要使函数在上为增函数,必须恒成立
,即恒成立 …………………………………10分
又,
的取值范围是 ………………………………12分
17.(本小题满分14分)
证明: (1)取PC的中点G,连结FG、EG
∴FG为△CDP的中位线 ∴FGCD……1分
∵四边形ABCD为矩形,E为AB的中点
∴ABCD ∴FGAE
∴四边形AEGF是平行四边形 ………………2分
∴AF∥EG ………3分
又EG平面PCE,AF平面PCE ………4分
∴AF∥平面PCE ………………………………………5分
(2)∵ PA⊥底面ABCD
∴PA⊥AD,PA⊥CD,又AD⊥CD,PAAD=A
∴CD⊥平面ADP
又AF平面ADP ∴CD⊥AF ……………………………… 6分
直角三角形PAD中,∠PDA=45°
∴△PAD为等腰直角三角形 ∴PA=AD=2 ………………………… 7分
∵F是PD的中点
∴AF⊥PD,又CDPD=D
∴AF⊥平面PCD ……………………………… 8分
∵AF∥EG
∴EG⊥平面PCD …………………………… 9分
又EG平面PCE
平面PCE⊥平面PCD …………………………… 10分
(3)三棱锥C-BEP即为三棱锥P-BCE ……………………………11分
PA是三棱锥P-BCE的高,
Rt△BCE中,BE=1,BC=2,
∴三棱锥C-BEP的体积
VC-BEP=VP-BCE= … 14分
18.(本小题满分14分)
解:(1)由已知得 解得.…………………1分
设数列的公比为,由,可得.
又,可知,即, …………………4分
解得.
由题意得. .………………………………………… 6分
故数列的通项为. … ……………………………………8分
(2)由于 由(1)得
= ………………………………………10分
又
是首项为公差为的等差数列 ……………12分
…………………………14分
19.(本小题满分14分)
解:(1)如图,设为动圆圆心, ,过点作直线的垂线,垂足为,由题意知: ……………………………………2分
即动点到定点与到定直线的距离相等,
由抛物线的定义知,点的轨迹为抛物线,其中为焦点,
为准线,
∴动圆圆心的轨迹方程为 ……………………………………5分
(2)由题可设直线的方程为
由得
△, ………………………………………………7分
设,,则, ………………………9分
由,即 ,,于是,……11分
即,,
,解得或(舍去), …………………13分
又, ∴ 直线存在,其方程为 ……………14分
20.(本小题满分14分)
解:(1)由已知,得,比较两边系数,
得. ……………………4分
(2)令,要有三个不等的实数根,则函数有
一个极大值和一个极小值,且极大值大于0,极小值小于0. …………5分
由已知,得有两个不等的实根,
, 得.……… 6分
又,,将代入(1)(3),有,又
., ………8分
则,且在处取得极大值,在处取得极小值10分 故要有三个不等的实数根,
则必须 ……………… 12分
解得. ………………… 14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com