查看更多

 

题目列表(包括答案和解析)

(本小题满分15分)

已知函数,其中 (),若相邻两对称轴间的距离不小于

   (Ⅰ)求的取值范围;

   (Ⅱ)在中,分别是角的对边,,当最大时,,求的面积.

查看答案和解析>>

(本小题满分15分)

某旅游商品生产企业,2009年某商品生产的投入成本为1元/件,

出厂价为流程图的输出结果元/件,年销售量为10000件,

因2010年国家长假的调整,此企业为适应市场需求,

计划提高产品档次,适度增加投入成本.若每件投入成本增加的

比例为),则出厂价相应提高的比例为

同时预计销售量增加的比例为

已知得利润(出厂价投入成本)年销售量.

(Ⅰ)写出2010年预计的年利润

与投入成本增加的比例的关系式;

(Ⅱ)为使2010年的年利润比2009年有所增加,

问:投入成本增加的比例应在什么范围内?

查看答案和解析>>

(本小题满分15分)某地有三个村庄,分别位于等腰直角三角形ABC的三个顶点处,已知AB=AC=6km,现计划在BC边的高AO上一点P处建造一个变电站. 记P到三个村庄的距离之和为y.

(1)设,把y表示成的函数关系式;

(2)变电站建于何处时,它到三个小区的距离之和最小?

查看答案和解析>>

(本小题满分15分)如图,已知圆Ox2+y2=2交x轴于AB两点,曲线C是以AB为长轴,离心率为的椭圆,其右焦点为F.若点P(-1,1)为圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的右准线l于点Q.(1)求椭圆C的标准方程;

(2)证明:直线PQ与圆O相切.

查看答案和解析>>

(本小题满分15分)已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3a2+5>a4,数列{bn}满足,其前n项和为Sn.(1)求数列{an}的通项公式an;(2)若S2S1Sm(m∈N*)的等比中项,求正整数m的值.

查看答案和解析>>

一、             选择题(每小题5分,共50分.请把正确选择支号填在答题表内.)

1―5 DADBA     6―10 BADCB

二、填空题(每小题5分,共20分):

11.84;   12.e-2;   13.8;   14.3;

三、解答题:本大题共6小题,共80分. 解答应写出文字说明、证明过程或演算步骤.

 15(本小题满分12分)

解(1)∵//

①若共向,则 ||•||=       ………………… 3′

        ②若异向,则 =-||•||=-      ……………… 6′

(2)∵的夹角为135°,   ∴ ||•||cos135°=-1 …… 8′

         ∴||2222+2=1+2-2=1 ………… 11′

         ∴                    ……………………………………12

16. (本小题满分13分)

解:(1)函数可化简为f ( x ) = cos,                3分

最小正周期为;                        4分

时,f ( x )取得最大值1                5分

取得最大值时x的取值集合为       6分

(2)由得对称轴方程为:,其中   9分

      (3)由于f ( x ) = cos

f ( x )图像上各点向左平移个单位,得到 y=cos2x           11分

再把所得图像上各点的横线坐标缩短到原来的2倍,纵坐标不变,得到y=cosx

13分

17. (本小题满分13分)

解:(1)由已知得         解得.…………………1分

    设数列的公比为,由,可得

,可知,即,      ……………3分

解得

由题意得.  .……………………………………………… 5分

故数列的通项为.  … ………………………………7分

(2)由于    由(1)得

               …………………………9分

    又

    是等差数列.             …………………………………………11分

   

    …………………13分

18(本小题满分13分)

解:如图,连结,由已知,。。。。。。。1分

,      。。。。。。。。。。2分

,。。。。。3分

是等边三角形,       。。。。。4分

由已知,

,。。。。。。。。。6分

中,由余弦定理,

.             。。。。。。。。。。。。。10分

.       。。。。。。。。。。11分

因此,乙船的速度的大小为(海里/小时).。。。。。。12分

答:乙船每小时航行海里.  。。。。。。。。。。。。。。。。。。。。。。。。13分

29.(本小题满分14分)

解:(1)

 

 

             

20. (本小题满分15分)

解:(1)时,f(x)>1

x=-1,y=0则f(-1)=f(-1)f(0)∵f(-1)>1

f(0)=1……………………………3′

x>0,则fxx)=f(0)=fxf(-x)故

x∈R   fx)>0…………………………………………………5分

任取x1x2   

fx)在R上减函数………………………………………..7分

(2)①  由f(x)单调性

…9分

得:an+1=an+2  故{an}等差数列   ………………………10分

            是递增数列………………12分

n≥2时,

……………………………13分

a>1,∴x>1

x的取值范围(1,+∞)……………………………15分

 

 

 


同步练习册答案