(2)设点为椭圆上不同于的一个动点.直线与椭圆右准线相交于两点.证明:以为直径的圆必过椭圆外的一个定点 查看更多

 

题目列表(包括答案和解析)

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
3
,它的上顶点为A,左、右焦点分别为F1,F2,直线AF1,AF2分别交椭圆于点B,C.
(1)求证直线BO平分线段AC;
(2)设点P(m,n)(m,n为常数)在直线BO上且在椭圆外,过P的动直线l与椭圆交于两个不同点M,N,在线段MN上取点Q,满足
MP
NP
=
MQ
QN
,试证明点Q恒在一定直线上.

查看答案和解析>>

已知椭圆的中心在坐标原点,焦点在轴上,离心率为,且过双曲线的顶点.

(1)求椭圆的标准方程;

(2)命题:“设是双曲线上关于它的中心对称的任意两点, 为该双曲线上的动点,若直线均存在斜率,则它们的斜率之积为定值”.试类比上述命题,写出一个关于椭圆的类似的正确命题,并加以证明和求出此定值;

(3)试推广(Ⅱ)中的命题,写出关于方程不同时为负数)的曲线的统一的一般性命题(不必证明).

 

查看答案和解析>>

已知椭圆的中心在坐标原点,焦点在轴上,离心率为,且过双曲线的顶点.
(1)求椭圆的标准方程;
(2)命题:“设是双曲线上关于它的中心对称的任意两点, 为该双曲线上的动点,若直线均存在斜率,则它们的斜率之积为定值”.试类比上述命题,写出一个关于椭圆的类似的正确命题,并加以证明和求出此定值;
(3)试推广(Ⅱ)中的命题,写出关于方程不同时为负数)的曲线的统一的一般性命题(不必证明).

查看答案和解析>>

已知椭圆C1
x2
a2
+
y2
b2
=1   (a>b>0)
的离心率为
3
3
,连接椭圆的四个顶点得到的四边形的面积为2
6

(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)设O为坐标原点,取C2上不同于O的点S,以OS为直径作圆与C2相交另外一点R,求该圆面积的最小值时点S的坐标.

查看答案和解析>>

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
3
,它的上顶点为A,左、右焦点分别为F1,F2,直线AF1,AF2分别交椭圆于点B,C.
(1)求证直线BO平分线段AC;
(2)设点P(m,n)(m,n为常数)在直线BO上且在椭圆外,过P的动直线l与椭圆交于两个不同点M,N,在线段MN上取点Q,满足
MP
NP
=
MQ
QN
,试证明点Q恒在一定直线上.
精英家教网

查看答案和解析>>


同步练习册答案