设每次摸奖中奖的概率为p.三次摸奖中恰有一次中奖的概率是.因而在上为增函数,在上为减函数. --4分(用重要不等式确定p值的参照给分) 查看更多

 

题目列表(包括答案和解析)

已知一个口袋中装有n个红球(n≥1且n∈N)和2个白球,从中有放回地连续摸三次,每次摸出两个球,若两个球颜色不同则为中奖,否则不中奖.

(1)当n=3时,设三次摸球中(每次摸球后放回)中奖的次数为ξ,求的ξ分布列;

(2)记三次摸球中(每次摸球后放回)恰有两次中奖的概率为P,当n取多少时,P最大.

查看答案和解析>>

已知一个口袋中装有n个红球(n≥1且n∈N+)和2个白球,从中有放回连续摸三次,每次摸出2个球,若两个球颜色不同,则为中奖.
(1)当n=3时,设中奖次数为ζ,求ζ的分布列及期望;
(2)记三次摸球中,恰好两次中奖概率为P,当n为多少时,P有最大值.

查看答案和解析>>

已知一个口袋中装有n个红球(n≥1且n∈N+)和2个白球,从中有放回连续摸三次,每次摸出2个球,若两个球颜色不同,则为中奖.
(1)当n=3时,设中奖次数为ζ,求ζ的分布列及期望;
(2)记三次摸球中,恰好两次中奖概率为P,当n为多少时,P有最大值.

查看答案和解析>>

一袋中装有4n只红球和n只黑球(所有球的形状、大小都相同),每一次从袋中摸出两只球,且每次摸球后均放回袋中.现规定:摸出的两只球颜色不同则为中奖.设三次摸球恰有一次中奖的概率为P,则当n=
5
5
时,使得P最大.

查看答案和解析>>

一袋中装有4n只红球和n只黑球(所有球的形状、大小都相同),每一次从袋中摸出两只球,且每次摸球后均放回袋中.现规定:摸出的两只球颜色不同则为中奖.设三次摸球恰有一次中奖的概率为P,则当n=    时,使得P最大.

查看答案和解析>>


同步练习册答案