18.[方法一](1)证明:在线段BC1上取中点F.连结EF.DF则由题意得EF∥DA1.且EF=DA1.∴四边形EFDA1是平行四边形 查看更多

 

题目列表(包括答案和解析)

如图,在三棱柱ABC­A1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求证:AA1⊥平面ABC;

(2)求二面角A1­BC1­B1的余弦值;

(3)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.

 

查看答案和解析>>

(2013•北京)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求
BDBC1
的值.

查看答案和解析>>

如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.

查看答案和解析>>

在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1.
(1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一事实;
(2)求直线EC与平面ABED所成角的正弦值.

查看答案和解析>>

通过点A(0,a)的直线y=kx+a与圆(x-2)2+y2=1相交于不同的两点B、C,在线段BC上取一点P,使|BP|:|PC|=|AB|:|AC|,设点B在点C的左边,
(1)试用a和k表示P点的坐标;
(2)求k变化时P点的轨迹;
(3)证明不论a取何值时,上述轨迹恒过圆内的一定点.

查看答案和解析>>


同步练习册答案