(1)解:∵= ln x+1.解>0.得x>,解<0.得0<x<.∴f(x)的单调递增区间是.单调递减区间是(0, ). -3分+ fln 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+lnx(其中e是自然界对数的底,a∈R)
(1)求f(x)的解析式;
(2)设g(x)=
ln|x|
|x|
,x∈[-e,0)
,求证:当a=-1时,f(x)>g(x)+
1
2

(3)是否存在实数a,使得当x∈[-e,0)时,f(x)的最小值是3?如果存在,求出实数a的值;如果不存在,请说明理由.

查看答案和解析>>

已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+lnx(其中e是自然界对数的底,a∈R)
(1)求f(x)的解析式;
(2)设g(x)=
ln|x|
|x|
,x∈[-e,0)
,求证:当a=-1时,f(x)>g(x)+
1
2

(3)是否存在实数a,使得当x∈[-e,0)时,f(x)的最小值是3?如果存在,求出实数a的值;如果不存在,请说明理由.

查看答案和解析>>

对于下列结论:
①函数y=ax+2(x∈R)的图象可以由函数y=ax(a>0且a≠1)的图象平移得到;
②函数y=2x与函数y=log2x的图象关于y轴对称;
③方程log5(2x+1)=log5(x2-2)的解集为{-1,3};
④函数y=ln(1+x)-ln(1-x)为奇函数.
其中正确的结论是
①④
①④
(把你认为正确结论的序号都填上).

查看答案和解析>>

对于下列结论:
①函数y=ax+2(x∈R)的图象可以由函数y=ax(a>0且a≠1)的图象平移得到;
②函数y=2x与函数y=log2x的图象关于y轴对称;
③方程log5(2x+1)=log5(x2-2)的解集为{-1,3};
④函数y=ln(1+x)-ln(1-x)为奇函数.
其中正确的结论是______(把你认为正确结论的序号都填上).

查看答案和解析>>

对于下列结论:
①函数y=ax+2(x∈R)的图象可以由函数y=ax(a>0且a≠1)的图象平移得到;
②函数y=2x与函数y=log2x的图象关于y轴对称;
③方程log5(2x+1)=log5(x2-2)的解集为{-1,3};
④函数y=ln(1+x)-ln(1-x)为奇函数.
其中正确的结论是    (把你认为正确结论的序号都填上).

查看答案和解析>>


同步练习册答案