题目列表(包括答案和解析)
在数列中, 记
(Ⅰ)求、、、并推测;
(Ⅱ)用数学归纳法证明你的结论.
【解析】第一问利用递推关系可知,、、、,猜想可得
第二问中,①当时,=,又,猜想正确
②假设当时猜想成立,即,
当时,
=
=,即当时猜想也成立
两步骤得到。
(2)①当时,=,又,猜想正确
②假设当时猜想成立,即,
当时,
=
=,即当时猜想也成立
由①②可知,对于任何正整数都有成立
已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于、两点。
(I)求曲线的方程;
(II)试证明:在轴上存在定点,使得总能被轴平分
【解析】第一问中设为曲线上的任意一点,则点在圆上,
∴,曲线的方程为
第二问中,设点的坐标为,直线的方程为, ………………3分
代入曲线的方程,可得
∵,∴
确定结论直线与曲线总有两个公共点.
然后设点,的坐标分别, ,则,
要使被轴平分,只要得到。
(1)设为曲线上的任意一点,则点在圆上,
∴,曲线的方程为. ………………2分
(2)设点的坐标为,直线的方程为, ………………3分
代入曲线的方程,可得 ,……5分
∵,∴,
∴直线与曲线总有两个公共点.(也可根据点M在椭圆的内部得到此结论)
………………6分
设点,的坐标分别, ,则,
要使被轴平分,只要, ………………9分
即,, ………………10分
也就是,,
即,即只要 ………………12分
当时,(*)对任意的s都成立,从而总能被轴平分.
所以在x轴上存在定点,使得总能被轴平分
已知,(其中)
⑴求及;
⑵试比较与的大小,并说明理由.
【解析】第一问中取,则; …………1分
对等式两边求导,得
取,则得到结论
第二问中,要比较与的大小,即比较:与的大小,归纳猜想可得结论当时,;
当时,;
当时,;
猜想:当时,运用数学归纳法证明即可。
解:⑴取,则; …………1分
对等式两边求导,得,
取,则。 …………4分
⑵要比较与的大小,即比较:与的大小,
当时,;
当时,;
当时,; …………6分
猜想:当时,,下面用数学归纳法证明:
由上述过程可知,时结论成立,
假设当时结论成立,即,
当时,
而
∴
即时结论也成立,
∴当时,成立。 …………11分
综上得,当时,;
当时,;
当时,
已知数列的前项和为,且 (N*),其中.
(Ⅰ) 求的通项公式;
(Ⅱ) 设 (N*).
①证明: ;
② 求证:.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到,②由于,
所以利用放缩法,从此得到结论。
解:(Ⅰ)当时,由得. ……2分
若存在由得,
从而有,与矛盾,所以.
从而由得得. ……6分
(Ⅱ)①证明:
证法一:∵∴
∴
∴.…………10分
证法二:,下同证法一. ……10分
证法三:(利用对偶式)设,,
则.又,也即,所以,也即,又因为,所以.即
………10分
证法四:(数学归纳法)①当时, ,命题成立;
②假设时,命题成立,即,
则当时,
即
即
故当时,命题成立.
综上可知,对一切非零自然数,不等式②成立. ………………10分
②由于,
所以,
从而.
也即
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com