A. 查看更多

 

题目列表(包括答案和解析)

精英家教网A.(选修4-4坐标系与参数方程)已知点A是曲线ρ=2sinθ上任意一点,则点A到直线ρsin(θ+
π3
)=4
的距离的最小值是
 

B.(选修4-5不等式选讲)不等式|x-log2x|<x+|log2x|的解集是
 

C.(选修4-1几何证明选讲)如图所示,AC和AB分别是圆O的切线,且OC=3,AB=4,延长AO到D点,则△ABD的面积是
 

查看答案和解析>>

精英家教网A.(不等式选做题)若关于x的不等式|x+3|-|x+2|≥log2a有解,则实数a的取值范围是:
 

B.(几何证明选做题)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若
PB
PA
=
1
2
PC
PD
=
1
3
,则
BC
AD
的值为
 

C.(坐标系与参数方程选做题)设曲线C的参数方程为
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
2
cosθ-sinθ
,则曲线C上到直线l距离为
2
的点的个数为:
 

查看答案和解析>>

精英家教网A.(不等式选做题)
函数f(x)=x2-x-a2+a+1对于任一实数x,均有f(x)≥0.则实数a满足的条件是
 

B.(几何证明选做题)
如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2
3
,AB=BC=4,则AC的长为
 

C.(坐标系与参数方程选做题)
在极坐标系中,曲线ρ=4cos(θ-
π
3
)
上任意两点间的距离的最大值为
 

查看答案和解析>>

精英家教网A.不等式
x-2
x2+3x+2
>0
的解集是
 

B.如图,AB是⊙O的直径,P是AB延长线上的一点,过P作⊙O的切线,切点为CPC=2
3
,若∠CAP=30°,则⊙O的直径AB=
 

C.(极坐标系与参数方程选做题)若圆C:
x=1+
2
cosθ
y=2+
2
sinθ
(θ为参数)
与直线x-y+m=0相切,则m=
 

查看答案和解析>>

精英家教网A.(不等式选做题)不等式|3x-6|-|x-4|>2x的解集为
 


B.(几何证明选做题)如图,直线PC与圆O相切于点C,割线PAB经过圆心O,
弦CD⊥AB于点E,PC=4,PB=8,则CE=
 

C.(坐标系与参数方程选做题)在极坐标系中,圆ρ=4cosθ的圆心到直线ρsin(θ+
π
4
)=2
2
的距离为
 

查看答案和解析>>

一选择题:DAADB  CBDDC 

二.填空题:11. 1  ;  12.5     13.     14. 1;   15.5

16.解:(1)…………4分

将y=cos2x的图象先向左平移个单位长度,再将所得图像上的点的横坐标保持不变,纵坐标伸长为原来的倍,最后将所得图像向上平移2个单位即可.………………………………………………7分

(2)    …………9分

       即  ……………………11分

∴函数f(x)的最小值为3,最大值为…………………………………………………12分

 

 

17.解:(1)

;……………………5分

,得

的单调减区间是;阶段   ………………8分

(2)当时,

∴在时,取最大值,由,得。…………12分

 

 

18.解析:(1)= ……2’

    =…………  6’

    (2)由余弦定理,得

    即……………………………………  8’

 ……………………10’

  可求得…………………………………  12’

19.解:(I) 公差为,公比为

由条件:,得……………………4分

                ………………………………………………6分

(II)由(1)可知

……………………(1)

………………………(2)

由(2)-(1)得

…………………………9分

…………………………………………………………12分

 

 

20.解:(Ⅰ)该出版社一年的利润(万元)与每本书定价的函数关系式为:

       .……………………4分(定义域不写扣2分)

(Ⅱ)

                  .…………………………6分

       令或x=20(不合题意,舍去).…………7分

      

       在两侧的值由正变负.

       所以(1)当时,

       .……9分

(2)当时,

,…………………………11分

所以

答:若,则当每本书定价为元时,出版社一年的利润最大,最大值(万元);若,则当每本书定价为11元时,出版社一年的利润最大,最大值(万元).…………………………13分

 

 

21.解:(1)函数定义域为………………………………2分

∴增区间:(0,+∞),减区间:(-1,0)………………………………5分

(2)由

……………………8分

时,恒成立。………………………………………………10分

(3)

 ……………………11分

    由

上恰有两相异实根

……………………………………14分

 


同步练习册答案