在数列中.对任意.都有.则称为“等差比数列 .下面对“等差比数列 的判断:①k不可能为0.②等差数列一定是等差比数列,③等比数列一定是等差比数列,④通项公式为的数列一定是等差比数列.其中正确的判断是( )(A)①② (B) ②③ (C)③④ (D)①④ 查看更多

 

题目列表(包括答案和解析)

若在数列{an}中,对任意n∈N+,都有
an+2-an+1
an+1-an
=k
(k为常数),则称{an}为“等差比数列”.下列是对“等差比数列”的判断:
①k不可能为0
②等差数列一定是等差比数列
③等比数列一定是等差比数列
④若an=-3n+2,则数列{an}是等差比数列;
其中正确的判断是(  )

查看答案和解析>>

若在数列{an}中,对任意n∈N+,都有
an+2-an+1
an+1-an
=k
(k为常数),则称{an}为“等差比数列”.下列是对“等差比数列”的判断:
①k不可能为0
②等差数列一定是等差比数列
③等比数列一定是等差比数列
④若an=-3n+2,则数列{an}是等差比数列;
其中正确的判断是(  )
A.①②B.②③C.③④D.①④

查看答案和解析>>

(2006•石景山区一模)已知函数y=f(x)对于任意θ≠
2
(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a为常数).
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)利用函数y=f(x)构造一个数列,方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果xi不在定义域中,那么构造数列的过程就停止.
(ⅰ)如果可以用上述方法构造出一个常数列,求a的取值范围;
(ⅱ)是否存在一个实数a,使得取定义域中的任一值作为x1,都可用上述方法构造出一个无穷数列{xn}?若存在,求出a的值;若不存在,请说明理由;
(ⅲ)当a=1时,若x1=-1,求数列{xn}的通项公式.

查看答案和解析>>

若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”.已知函数h(x)=x2,m(x)=2elnx(e为自然对数的底数),φ(x)=x-2,d(x)=-1.
有下列命题:
①f(x)=h(x)-m(x)在x∈(0,
e
)
递减;
②h(x)和d(x)存在唯一的“隔离直线”;
③h(x)和φ(x)存在“隔离直线”y=kx+b,且b的最大值为-
1
4

④函数h(x)和m(x)存在唯一的隔离直线y=2
e
x-e

其中真命题的个数(  )

查看答案和解析>>

若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”.已知函数h(x)=x2,m(x)=2elnx(e为自然对数的底数),φ(x)=x-2,d(x)=-1.
有下列命题:
①f(x)=h(x)-m(x)在递减;
②h(x)和d(x)存在唯一的“隔离直线”;
③h(x)和φ(x)存在“隔离直线”y=kx+b,且b的最大值为
④函数h(x)和m(x)存在唯一的隔离直线
其中真命题的个数( )
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

一选择题:DAADB  CBDDC 

二.填空题:11. 1  ;  12.5     13.     14. 1;   15.5

16.解:(1)…………4分

将y=cos2x的图象先向左平移个单位长度,再将所得图像上的点的横坐标保持不变,纵坐标伸长为原来的倍,最后将所得图像向上平移2个单位即可.………………………………………………7分

(2)    …………9分

       即  ……………………11分

∴函数f(x)的最小值为3,最大值为…………………………………………………12分

 

 

17.解:(1)

;……………………5分

,得

的单调减区间是;阶段   ………………8分

(2)当时,

∴在时,取最大值,由,得。…………12分

 

 

18.解析:(1)= ……2’

    =…………  6’

    (2)由余弦定理,得

    即……………………………………  8’

 ……………………10’

  可求得…………………………………  12’

19.解:(I) 公差为,公比为

由条件:,得……………………4分

                ………………………………………………6分

(II)由(1)可知

……………………(1)

………………………(2)

由(2)-(1)得

…………………………9分

…………………………………………………………12分

 

 

20.解:(Ⅰ)该出版社一年的利润(万元)与每本书定价的函数关系式为:

       .……………………4分(定义域不写扣2分)

(Ⅱ)

                  .…………………………6分

       令或x=20(不合题意,舍去).…………7分

      

       在两侧的值由正变负.

       所以(1)当时,

       .……9分

(2)当时,

,…………………………11分

所以

答:若,则当每本书定价为元时,出版社一年的利润最大,最大值(万元);若,则当每本书定价为11元时,出版社一年的利润最大,最大值(万元).…………………………13分

 

 

21.解:(1)函数定义域为………………………………2分

∴增区间:(0,+∞),减区间:(-1,0)………………………………5分

(2)由

……………………8分

时,恒成立。………………………………………………10分

(3)

 ……………………11分

    由

上恰有两相异实根

……………………………………14分

 


同步练习册答案