(Ⅰ)求抛物线的方程,中的抛物线上是否存在点D.使得|DB|=|DC|成立?如果存在.求出点D的坐标,如果不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

抛物线的方程为,过抛物线上一点()作斜率为的两条直线分别交抛物线两点(三点互不相同),且满足).
(1)求抛物线的焦点坐标和准线方程;
(2)设直线上一点,满足,证明线段的中点在轴上;
(3)当=1时,若点的坐标为,求为钝角时点的纵坐标的取值范围.

查看答案和解析>>

抛物线的方程为,过抛物线上一点()作斜率为的两条直线分别交抛物线两点(三点互不相同),且满足).
(1)求抛物线的焦点坐标和准线方程;
(2)设直线上一点,满足,证明线段的中点在轴上;
(3)当=1时,若点的坐标为,求为钝角时点的纵坐标的取值范围.

查看答案和解析>>

抛物线的方程为,过抛物线上一点()作斜率为的两条直线分别交抛物线两点(三点互不相同),且满足).

1)求抛物线的焦点坐标和准线方程;

2)设直线上一点,满足,证明线段的中点在轴上;

3)当=1时,若点的坐标为,求为钝角时点的纵坐标的取值范围.

 

查看答案和解析>>

 设抛物线的方程为为直线上任意一点,过点作抛物线的两条切线,切点分别为,.

(1)当的坐标为时,求过三点的圆的方程,并判断直线与此圆的位置关系;

(2)求证:直线恒过定点;

(3)当变化时,试探究直线上是否存在点,使为直角三角形,若存在,有几个这样的点,若不存在,说明理由.

 

 

查看答案和解析>>

抛物线的顶点在原点O,焦点为椭圆
x2
3
+
y2
2
=1的右焦点F.
(1)求抛物线的方程;
(2)设点P在抛物线上运动,求P到直线y=x+3的距离的最小值,并求此时点P的坐标.

查看答案和解析>>


同步练习册答案