特别地.当时.又称为的λ-伴随切线. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ax+lnx,a∈R
(Ⅰ)求函数f(x)的极值;
(Ⅱ)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x0,y0),且x1<x0<x2,使得曲线在点Q处的切线?∥P1P2,则称?为弦P1P2的伴随切线.特别地,当x0=λx1+(1-λ)x2(0<λ<1)时,又称?为P1P2的λ-伴随切线.
(ⅰ)求证:曲线y=f(x)的任意一条弦均有伴随切线,并且伴随切线是唯一的;
(ⅱ)是否存在曲线C,使得曲线C的任意一条弦均有
12
-
伴随切线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=ax+lnx,a∈R
(Ⅰ)求函数f(x)的极值;
(Ⅱ)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x,y),且x1<x<x2,使得曲线在点Q处的切线?∥P1P2,则称?为弦P1P2的伴随切线.特别地,当x=λx1+(1-λ)x2(0<λ<1)时,又称?为P1P2的λ-伴随切线.
(ⅰ)求证:曲线y=f(x)的任意一条弦均有伴随切线,并且伴随切线是唯一的;
(ⅱ)是否存在曲线C,使得曲线C的任意一条弦均有伴随切线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=ax+lnx,a∈R
(Ⅰ)求函数f(x)的极值;
(Ⅱ)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x,y),且x1<x<x2,使得曲线在点Q处的切线?∥P1P2,则称?为弦P1P2的伴随切线.特别地,当x=λx1+(1-λ)x2(0<λ<1)时,又称?为P1P2的λ-伴随切线.
(ⅰ)求证:曲线y=f(x)的任意一条弦均有伴随切线,并且伴随切线是唯一的;
(ⅱ)是否存在曲线C,使得曲线C的任意一条弦均有伴随切线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=ax+lnx,a∈R
(Ⅰ)求函数f(x)的极值;
(Ⅱ)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x,y),且x1<x<x2,使得曲线在点Q处的切线?∥P1P2,则称?为弦P1P2的伴随切线.特别地,当x=λx1+(1-λ)x2(0<λ<1)时,又称?为P1P2的λ-伴随切线.
(ⅰ)求证:曲线y=f(x)的任意一条弦均有伴随切线,并且伴随切线是唯一的;
(ⅱ)是否存在曲线C,使得曲线C的任意一条弦均有伴随切线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=ax+lnx,a∈R

(Ⅰ)求函数f(x)的极值;

(Ⅱ)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x0,y0),且x1<x0<x2,使得曲线在点Q处的切线l∥P1P2,则称l为弦P1P2的伴随切线.特别地,当x0=λx1+(1-λ)x2(0<λ<1)时,又称l为P1P2λ-伴随切线

(ⅰ)求证:曲线y=f(x)的任意一条弦均有伴随切线,并且伴随切线是唯一的;

(ⅱ)是否存在曲线C,使得曲线C的任意一条弦均有-伴随切线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.

查看答案和解析>>


同步练习册答案