当且仅当时等号成立.故的最小值为. 查看更多

 

题目列表(包括答案和解析)

已知是偶函数,当>0 时, ,且当时,成立,则的最小值为

              B.                 C.              D. 1

 

查看答案和解析>>

已知递增等差数列满足:,且成等比数列.

(1)求数列的通项公式

(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.

【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为

由题意可知,即,解得d,得到通项公式,第二问中,不等式等价于,利用当时,;当时,;而,所以猜想,的最小值为然后加以证明即可。

解:(1)设数列公差为,由题意可知,即

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等价于

时,;当时,

,所以猜想,的最小值为.     …………8分

下证不等式对任意恒成立.

方法一:数学归纳法.

时,,成立.

假设当时,不等式成立,

时,, …………10分

只要证  ,只要证 

只要证  ,只要证 

只要证  ,显然成立.所以,对任意,不等式恒成立.…14分

方法二:单调性证明.

要证 

只要证  ,  

设数列的通项公式,        …………10分

,    …………12分

所以对,都有,可知数列为单调递减数列.

,所以恒成立,

的最小值为

 

查看答案和解析>>

在△ABC中,分别是,的中点,且,若恒成立,则的最小值为(  )

A.             B.               C.              D.

 

查看答案和解析>>

给出命题:若是正常数,且,则(当且仅当时等号成立). 根据上面命题,可以得到函数)的最小值及取最小值时的x值分别为(    )

A.11+6      B.11+6        C.5,          D.25,

 

查看答案和解析>>

我们将具有下列性质的所有函数组成集合M:函数,对任意均满足,当且仅当时等号成立。

(1)若定义在(0,+∞)上的函数∈M,试比较大小.

(2)设函数g(x)=-x2,求证:g(x)∈M.

查看答案和解析>>


同步练习册答案