故所求最小距离为. 查看更多

 

题目列表(包括答案和解析)

已知曲线上动点到定点与定直线的距离之比为常数

(1)求曲线的轨迹方程;

(2)若过点引曲线C的弦AB恰好被点平分,求弦AB所在的直线方程;

(3)以曲线的左顶点为圆心作圆,设圆与曲线交于点与点,求的最小值,并求此时圆的方程.

【解析】第一问利用(1)过点作直线的垂线,垂足为D.

代入坐标得到

第二问当斜率k不存在时,检验得不符合要求;

当直线l的斜率为k时,;,化简得

第三问点N与点M关于X轴对称,设,, 不妨设

由于点M在椭圆C上,所以

由已知,则

由于,故当时,取得最小值为

计算得,,故,又点在圆上,代入圆的方程得到.  

故圆T的方程为:

 

查看答案和解析>>

为常数,离心率为的双曲线上的动点到两焦点的距离之和的最小值为,抛物线的焦点与双曲线的一顶点重合。(Ⅰ)求抛物线的方程;(Ⅱ)过直线为负常数)上任意一点向抛物线引两条切线,切点分别为,坐标原点恒在以为直径的圆内,求实数的取值范围。

【解析】第一问中利用由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程

第二问中,

故直线的方程为,即

所以,同理可得:

借助于根与系数的关系得到即是方程的两个不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程

(Ⅱ)设

故直线的方程为,即

所以,同理可得:

是方程的两个不同的根,所以

由已知易得,即

 

查看答案和解析>>


同步练习册答案