题目列表(包括答案和解析)
6 |
OF |
FQ |
6 |
6 |
OF |
FQ |
OF |
| ||
4 |
OQ |
.(本小题满分12分) 已知双曲线的两个焦点的坐标为、,离心率.(1)求双曲线的标准方程;(2)设是(1)中所求双曲线上任意一点,过点的直线与两渐近线分别交于点,若,求的面积.
求圆心在直线y=-2x上,并且经过点A(2,-1),与直线x+y=1相切的圆的方程.
【解析】利用圆心和半径表示圆的方程,首先
设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3, ………4分
和y=-2x联立解得x=1,y=-2,即圆心(1,-2)
∴r==,
故所求圆的方程为:+=2
解:法一:
设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3, ………4分
和y=-2x联立解得x=1,y=-2,即圆心(1,-2) ……………………8分
∴r==, ………………………10分
故所求圆的方程为:+=2 ………………………12分
法二:由条件设所求圆的方程为:+=
, ………………………6分
解得a=1,b=-2, =2 ………………………10分
所求圆的方程为:+=2 ………………………12分
其它方法相应给分
x2 |
a2 |
y2 |
b2 |
3 |
1 |
2 |
x |
2 |
x |
2 |
3 |
P1M |
MP2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com