题目列表(包括答案和解析)
如下图,过曲线C:y=ex上一点P0(0,1)作曲线C的切线l0交x轴于点Q1(x1,0),又过Q1作x轴的垂线交曲线C于点P1(x1,y1),然后再过P1(x1,y1)作曲线C的切线l1交x轴于点Q2(x2,0),又过Q2作x轴的垂线交曲线C于点P2(x2,y2),…,以此类推,过点Pn的切线ln与x轴相交于点Qn+1(xn+1,0),再过点Qn+1作x轴的垂线交曲线C于点Pn+1(xn+1,yn+1)(n∈N*).
(1)求x1、x2及数列{xn}的通项公式;
(2)设曲线C与切线ln及直线Pn+1Qn+1所围成的图形面积为Sn,求Sn的表达式;(3)在满足(2)的条件下,若数列{Sn}的前n项和为Tn,求证:N*.
设满足以下两个条件的有穷数列a1,a2,…an为n(n=2,3,4…)阶“期待数列”:
①a1+a2+a3+…+an=0;
②|a1|+|a2|+|a3|+…+|an|=1.
(1)若等比数列{an}为2k(k∈N*)阶“期待数列”,求公比q;
(2)若一个等差数列{an}既是2k(k∈N*)阶“期待数列”又是递增数列,求该数列的通项公式;
(3)记n阶“期待数列”{ai}的前k项和为Sk(k=1,2,3…,n):
(ⅰ)求证:;
(ⅱ)若存在m∈{1,2,3…n}使,试问数列{Si}能否为n阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.
设满足以下两个条件的有穷数列a1,a2,…an为n(n=2,3,4…)阶“期待数列”:
①a1+a2+a3+…+an=0;②|a1|+|a2|+|a3|+…+|an|=1.
(1)若等比数列{an}为2k(k∈N*)阶“期待数列”,求公比q;
(2)若一个等差数列{an}既是2k(k∈N*)阶“期待数列”又是递增数列,求该数列的通项公式;
(3)记n阶“期待数列”{ai}的前k项和为Sk(k=1,2,3,…n):
(ⅰ)求证:;
(ⅱ)若存在m∈{1,2,3,…n}使,试问数列{Si}能否为n阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.
已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.
(1)求f(x)的解析式;
(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依题意
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)设切点为(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)
又切线过点A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
则g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.
∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2
画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,
所以m的取值范围是(-6,2).
设函数y=f(x)是定义在R上的奇函数,且f(x-2)=-f(x)对一切xÎ R都成立,又当xÎ [-1,1]时,f(x)=x3,则下列五个命题:
①函数y=f(x)是以4为周期的周期函数;
②当xÎ [1,3]时,f(x)=(x-2)3;
③直线x=± 1是函数y=f(x)图象的对称轴;
④点(2,0)是是函数y=f(x)图象的对称中心;
其中正确的是________.(写出所有正确命题的序号)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com