知.当时, 在区间上的单调递增.在区间 查看更多

 

题目列表(包括答案和解析)

(12分)已知,函数,(为自然对数的底数)

(I)当时,求函数的单调递增区间;

(Ⅱ)若函数在(-1,1)上单调递增,求的取值范围;

(Ⅲ)函数能否为上的单调函数?若能,求出的取值范围;若不能,请说明理由。

查看答案和解析>>

已知函数

(Ⅰ)求函数的单调递增区间;

(Ⅱ)当时,在曲线上是否存在两点,使得曲线在两点处的切线均与直线交于同一点?若存在,求出交点纵坐标的取值范围;若不存在,请说明理由;

(Ⅲ)若在区间存在最大值,试构造一个函数,使得同时满足以下三个条件:①定义域,且;②当时,;③在中使取得最大值时的值,从小到大组成等差数列.(只要写出函数即可)

 

查看答案和解析>>

已知函数
(Ⅰ)求函数的单调递增区间;
(Ⅱ)当时,在曲线上是否存在两点,使得曲线在两点处的切线均与直线交于同一点?若存在,求出交点纵坐标的取值范围;若不存在,请说明理由;
(Ⅲ)若在区间存在最大值,试构造一个函数,使得同时满足以下三个条件:①定义域,且;②当时,;③在中使取得最大值时的值,从小到大组成等差数列.(只要写出函数即可)

查看答案和解析>>

已知函数
(Ⅰ)求函数的单调递增区间;
(Ⅱ)当时,在曲线上是否存在两点,使得曲线在两点处的切线均与直线交于同一点?若存在,求出交点纵坐标的取值范围;若不存在,请说明理由;
(Ⅲ)若在区间存在最大值,试构造一个函数,使得同时满足以下三个条件:①定义域,且;②当时,;③在中使取得最大值时的值,从小到大组成等差数列.(只要写出函数即可)

查看答案和解析>>

已知函数

1)当时,求函数的单调递增区间;
2)记函数的图象为曲线,设点是曲线上的不同两点.如果在曲线上存在点,使得:①;②曲线在点处的切线平行于直线,则称函数存在“中值相依切线”,试问:函数是否存在“中值相依切线”,请说明理由.

 

查看答案和解析>>


同步练习册答案