(2)若交椭圆右准线于M点.交椭圆右准线于N点.求证:M.N两点的纵坐标之积为定值. 查看更多

 

题目列表(包括答案和解析)

椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的一个焦点F1(-2,0),右准线方程x=8.
(1)求椭圆C的方程;
(2)若M为右准线上一点,A为椭圆C的左顶点,连接AM交椭圆于点P,求
PM
AP
的取值范围;
(3)设圆Q:(x-t)2+y2=1(t>4)与椭圆C有且只有一个公共点,过椭圆C上一点B作圆Q的切线BS、BT,切点为S,T,求
BS
BT
的最大值.

查看答案和解析>>

精英家教网椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
与抛物线C2:x2=2py(p>0)的一个交点为M.抛物线C2在点M处的切线过椭圆C1的右焦点F.
(1)若M(2,
2
5
5
)
,求C1和C2的标准方程;
(II)若b=1,求p关于a的函数表达式p=f(a).

查看答案和解析>>

椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的一个焦点F1(-2,0),右准线方程x=8.
(1)求椭圆C的方程;
(2)若M为右准线上一点,A为椭圆C的左顶点,连接AM交椭圆于点P,求
PM
AP
的取值范围;
(3)圆x2+(y-t)2=1上任一点为D,曲线C上任一点为E,如果线段DE长的最大值为2
5
+1
,求t的值.

查看答案和解析>>

椭圆C的中心为坐标原点O,点A1,A2分别是椭圆的左、右顶点,B为椭圆的上顶点,一个焦点为F(
3
,0),离心率为
3
2
.点M是椭圆C上在第一象限内的一个动点,直线A1M与y轴交于点P,直线A2M与y轴交于点Q.
(I)求椭圆C的标准方程;
(II)若把直线MA1,MA2的斜率分别记作k1,k2,求证:k1k2=-
1
4

(III) 是否存在点M使|PB|=
1
2
|BQ|,若存在,求出点M的坐标,若不存在,说明理由.

查看答案和解析>>

椭圆中心在原点,焦点在x轴上,离心率为
2
2
,椭圆右准线与x轴交于E(2,0).
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若M(2,t)(t>0),直线x+2y-10=0上有且仅有一点P使
PO
PM
=0
.求以OM为直径的圆的方程;
(Ⅲ)设椭圆左、右焦点分别为F1,F2,过E点作不与y轴垂直的直线l与椭圆交于A,B两个不同的点(B在E,A之间)若有
F1A
F2B
,求此时直线l的方程.

查看答案和解析>>


同步练习册答案