(1)求的单调递减区间, 查看更多

 

题目列表(包括答案和解析)

已知函数取得极值

(1)求的单调区间(用表示);

(2)设,若存在,使得成立,求的取值范围.

【解析】第一问利用

根据题意取得极值,

对参数a分情况讨论,可知

时递增区间:    递减区间: ,

时递增区间:    递减区间: ,

第二问中, 由(1)知:

 

从而求解。

解:

…..3分

取得极值, ……………………..4分

(1) 当时  递增区间:    递减区间: ,

时递增区间:    递减区间: , ………….6分

 (2)  由(1)知:

 

……………….10分

, 使成立

    得:

 

查看答案和解析>>

设函数

(1)当时,求曲线处的切线方程;

(2)当时,求的极大值和极小值;

(3)若函数在区间上是增函数,求实数的取值范围.

【解析】(1)中,先利用,表示出点的斜率值这样可以得到切线方程。(2)中,当,再令,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了在区间导数恒大于等于零,分离参数求解范围的思想。

解:(1)当……2分

   

为所求切线方程。………………4分

(2)当

………………6分

递减,在(3,+)递增

的极大值为…………8分

(3)

①若上单调递增。∴满足要求。…10分

②若

恒成立,

恒成立,即a>0……………11分

时,不合题意。综上所述,实数的取值范围是

 

查看答案和解析>>

如图所示,曲线段OMB是函数f(x)=x2(0<x<6)的图象,BA⊥x轴于A,曲线段OMB上一点M(t,f(t))处的切线PQ交x轴于P,交线段AB于Q,
(Ⅰ)试用t表示出△QAP的面积g(t);
(Ⅱ)求函数g(t)的单调递减区间.

查看答案和解析>>

已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且m∥n,把其中x,y所满足的关系式记为y=f(x).若f′(x)为f(x)的导函数,F(x)=f(x)+af'(x)(a>0),且F(x)是R上的奇函数.
(Ⅰ)求数学公式的值;
(Ⅱ)求函数f(x)的单调递减区间(用字母a表示);
(Ⅲ)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A与B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t);并求S(t)的最大值.

查看答案和解析>>

已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且m∥n,把其中x,y所满足的关系式记为y=f(x).若f′(x)为f(x)的导函数,F(x)=f(x)+af'(x)(a>0),且F(x)是R上的奇函数.
(Ⅰ)求的值;
(Ⅱ)求函数f(x)的单调递减区间(用字母a表示);
(Ⅲ)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A与B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t);并求S(t)的最大值.

查看答案和解析>>


同步练习册答案