在上的解析式为.故函数的解析式为 查看更多

 

题目列表(包括答案和解析)

函数在同一个周期内,当 时,取最大值1,当时,取最小值

(1)求函数的解析式

(2)函数的图象经过怎样的变换可得到的图象?

(3)若函数满足方程求在内的所有实数根之和.

【解析】第一问中利用

又因

       函数

第二问中,利用的图象向右平移个单位得的图象

再由图象上所有点的横坐标变为原来的.纵坐标不变,得到的图象,

第三问中,利用三角函数的对称性,的周期为

内恰有3个周期,

并且方程内有6个实根且

同理,可得结论。

解:(1)

又因

       函数

(2)的图象向右平移个单位得的图象

再由图象上所有点的横坐标变为原来的.纵坐标不变,得到的图象,

(3)的周期为

内恰有3个周期,

并且方程内有6个实根且

同理,

故所有实数之和为

 

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

已知函数.

(Ⅰ)若函数依次在处取到极值.求的取值范围;

(Ⅱ)若存在实数,使对任意的,不等式 恒成立.求正整数的最大值.

【解析】第一问中利用导数在在处取到极值点可知导数为零可以解得方程有三个不同的实数根来分析求解。

第二问中,利用存在实数,使对任意的,不等式 恒成立转化为,恒成立,分离参数法求解得到范围。

解:(1)

(2)不等式 ,即,即.

转化为存在实数,使对任意的,不等式恒成立.

即不等式上恒成立.

即不等式上恒成立.

,则.

,则,因为,有.

在区间上是减函数。又

故存在,使得.

时,有,当时,有.

从而在区间上递增,在区间上递减.

[来源:]

所以当时,恒有;当时,恒有

故使命题成立的正整数m的最大值为5

 

查看答案和解析>>

已知函数(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.

(1)求的解析式;         (2)当,求的值域.    

【解析】第一问利用三角函数的性质得到)由最低点为得A=2. 由x轴上相邻的两个交点之间的距离为=,即由点在图像上的

第二问中,

=,即时,取得最大值2;当

时,取得最小值-1,故的值域为[-1,2]

 

查看答案和解析>>

数学家欧拉

  欧拉(Euler),瑞士数学家及自然科学家.1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国彼得堡去逝.欧拉出生于牧师家庭,自幼受父亲的教育,13岁时入读巴塞尔大学,15岁大学毕业,16岁获硕士学位.

  欧拉是18世纪数学界最杰出的人物之一,他不但为数学界做出了巨大的贡献,更把数学推至几乎整个物理的领域.他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学中的经典著作.

  欧拉对数学符号的创立及推广起了积极的作用.比如用e表示自然对数的底,用i表示-1,用f(x)作为函数的符号,π虽不是欧拉首先提出的,但是在欧拉倡导下推广普及的.尤为不可思议的是欧拉将数学中最为活跃的五个数1,0,π,e,i竟用一个美妙绝伦的公式联系了起来:eiπ+1=0(欧拉指数公式),在西方数学界甚至认为此公式不亚于神的力量.

  欧拉对数学的研究如此广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理.

1.你对欧拉(Euler)了解吗?请查阅欧拉(Euler)的故事,对于他“13岁时入读巴塞尔大学,15岁大学毕业,16岁获硕士学位”,你有何感触?

2.作为新时代的青年,你做好将来为科学事业做贡献的思想准备了吗?

查看答案和解析>>


同步练习册答案