证明:设直线的方程为.由 .得 查看更多

 

题目列表(包括答案和解析)

设椭圆的一个顶点与抛物线的焦点重合,F1,F2分别是椭圆的左、右焦点,且离心率,且过椭圆右焦点F2的直线l与椭圆C交于M、N两点。
(1)求椭圆C的方程;
(2)是否存在直线l,使得,若存在,求出直线l的方程;若不存在,说明理由。
(3)若AB是椭圆C经过原点O的弦,MN∥AB,求证:为定值。

查看答案和解析>>

已知椭圆C的方程为
x2
a2
+
y2
2
= 1
(a>0),其焦点在x轴上,点Q(
2
2
7
2
)
为椭圆上一点.
(1)求该椭圆的标准方程;
(2)设动点P(x0,y0)满足
OP
=
OM
+2
ON
,其中M、N是椭圆C上的点,直线OM与ON的斜率之积为-
1
2
,求证:
x20
+2
y20
为定值;
(3)在(2)的条件下探究:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,给出证明;若不存在,请说明理由.

查看答案和解析>>

已知椭圆C的方程为:
x2
a2
+
y2
2
=1 (a>0)
,其焦点在x轴上,离心率e=
2
2

(1)求该椭圆的标准方程;
(2)设动点P(x0,y0)满足
OP
=
OM
+2
ON
,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为-
1
2
,求证:x02+2
y20
为定值.
(3)在(2)的条件下,问:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,给出证明;若不存在,请说明理由.

查看答案和解析>>

已知椭圆C的方程为:,其焦点在x轴上,离心率e=

(1)求该椭圆的标准方程;

(2)设动点P(x0,y0)满足+2,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为,求证:为定值.

(3)在(2)的条件下,问:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,给出证明;若不存在,请说明理由.

查看答案和解析>>

如图,抛物线的焦点到准线的距离与椭圆的长半轴相等,设椭圆的右顶点为A,C1,C2在第一象限的交点为B,O为坐标原点,且△OAB的面积为
(1)求椭圆C2的标准方程;
(2)过点A作直线l交C1于C,D两点,射线OC,OD分别交C2于E,F两点.
(I)求证:O点在以EF为直径的圆的内部;
(II)记△OEF,△OCD的面积分别为S1,S2,问是否存在直线l,使得S2=3S1?请说明理由.

查看答案和解析>>


同步练习册答案