题目列表(包括答案和解析)
(本小题12分)设函数.
(1)求函数的最大值和最小正周期;
设A,B,C为的三个内角,若且C为锐角,求.(意大利馅饼问题)山姆的意大利馅饼屋中设有一个投镖靶 该靶为正方形板.边长为18厘米,挂于前门附近的墙上,顾客花两角伍分的硬币便可投一镖并可有机会赢得一种意大利馅饼中的一个,投镖靶中画有三个同心圆,圆心在靶的中心,当投镖击中半径为1厘米的最内层圆域时.可得到一个大馅饼;当击中半径为1厘米到2厘米之间的环域时,可得到一个中馅饼;如果击中半径为2厘米到3厘米之间的环域时,可得到一个小馅饼,如果击中靶上的其他部分,则得不到谄饼,我们假设每一个顾客都能投镖中靶,并假设每个圆的周边线没有宽度,即每个投镖不会击中线上,试求一顾客将嬴得:
(a)一张大馅饼,
(b)一张中馅饼,
(c)一张小馅饼,
(d)没得到馅饼的概率
(本小题满分12分)
有一块边长为6m的正方形钢板,将其四个角各截去一个边长为x的小正方形,然后焊接成一个无盖的蓄水池。
(Ⅰ)写出以x为自变量的容积V的函数解析式V(x),并求函数V(x)的定义域;
(Ⅱ)指出函数V(x)的单调区间;
(Ⅲ)蓄水池的底边为多少时,蓄水池的容积最大?最大容积是多少?
(本小题满分12分) 已知向量,,.
(1)若求向量与的夹角;
(2)当时,求函数的最大值。
题号
答案
1.解析:命题“”的否命题是:“”,
故选C.
2.解析:由已知,得:,故选.
3.解析:若,则,解得.故选.
4.解析:由题意得,
又.故选.
5.解析:设成绩为环的人数是,由平均数的概念,得:.故选.
6.解析:是偶函数;是指数函数;是对数函数.故选.
7.解析:①的三视图均为正方形;②的三视图中正视图.侧视图为相同的等腰三角形,俯视图为圆;④的三视图中正视图.侧视图为相同的等腰三角形,俯视图为正方形.故选.
8.解析:程序的运行结果是,选.
9.解析:的图象先向左平移,横坐标变为原来的倍.答案:.
10.解析:特殊值法:令,
有.故选.
题号
11
12
13
14
15
答案
11.解析:.
12.解析:令,则,令,则,
同理得即当时,的值以为周期,
所以.
13.解析:由图象知:当函数的图象过点时,
取得最大值为2.
14. (坐标系与参数方程选做题)解析:将极坐标方程转化成直角坐标方程,圆上的动点到直线的距离的最大值就是圆心到直线的距离再加上半径.故填.
15. (几何证明选讲选做题)解析:连结,
则在和中:,
且,所以,
故.
三.解答题:本大题共6小题,满分80分.解答须写出文字说明.证明过程和演算步骤.
16.析:主要考察三角形中的边角关系、向量的坐标运算、二次函数的最值.
解:(1)∵,∴, ………………3分
又∵,∴. ……………………………………………5分
(2) ……………………………………………6分
, ………………………8分
∵,∴. ……………10分
∴当时,取得最小值为. …………12分
17.析:主要考察立体几何中的位置关系、体积.
解:(1)证明:连结,则//, …………1分
∵是正方形,∴.∵面,∴.
又,∴面. ………………4分
∵面,∴,
∴. …………………………………………5分
(2)证明:作的中点F,连结.
∵是的中点,∴,
∴四边形是平行四边形,∴ . ………7分
∵是的中点,∴,
又,∴.
∴四边形是平行四边形,//,
∵,,
∴平面面. …………………………………9分
又平面,∴面. ………………10分
(3). ……………………………11分
. ……………………………14分
18.析:主要考察事件的运算、古典概型.
解:设“朋友乘火车、轮船、汽车、飞机来”分别为事件,则,,,,且事件之间是互斥的.
(1)他乘火车或飞机来的概率为………4分
(2)他乘轮船来的概率是,
所以他不乘轮船来的概率为. ………………8分
(3)由于,
所以他可能是乘飞机来也可能是乘火车或汽车来的. …………………12分
19.析:主要考察函数的图象与性质,导数的应用.
解:(1)由函数的图象关于原点对称,得,………………1分
∴,∴. …………2分
∴,∴. ……………………………4分
∴,即. ……………………6分
∴. ……………………………………………………7分
(2)由(1)知,∴.
由 ,∴. …………………9分
0
+
0
ㄋ
极小
ㄊ
极大
ㄋ
∴. ………………………14分
20.析:主要考察直线.圆的方程,直线与圆的位置关系.
解:(1)(法一)∵点在圆上, …………………………2分
∴直线的方程为,即. ……………………………5分
(法二)当直线垂直轴时,不符合题意. ……………………………2分
当直线与轴不垂直时,设直线的方程为,即.
则圆心到直线的距离,即:,解得,……4分
∴直线的方程为. ……………………………………………5分
(2)设圆:,∵圆过原点,∴.
∴圆的方程为.…………………………7分
∵圆被直线截得的弦长为,∴圆心到直线:的距离:
. …………………………………………9分
整理得:,解得或. ……………………………10分
∵,∴. …………………………………………………………13分
∴圆:. ……………………………………14分
21.析:主要考察等差、等比数列的定义、式,求数列的和的方法.
解:(1)设的公差为,则:,,
∵,,∴,∴. ………………………2分
∴. …………………………………………4分
(2)当时,,由,得. …………………5分
当时,,,
∴,即. …………………………7分
∴. ……………………………………………………………8分
∴是以为首项,为公比的等比数列. …………………………………9分
(3)由(2)可知:. ……………………………10分
∴. …………………………………11分
∴
∴.
∴
. ………………………………………13分
∴. …………………………………………………14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com