如图.在四棱锥P―ABCD中.PD⊥底面ABCD.底面ABCD为正方形.PD=DC.E.F分别是AB.PB的中点. (I)求证:EF⊥CD, (II)求DB与平面DEF所成角的正弦值, (III)在平面PAD内是否存在一点G.使G在平面PCB上的射影为△PCB的外心.若存在.试确定点G的位置,若不存在.说明理由. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC=1,E、F分别是AB、PB的中点.
(Ⅰ)求证:EF⊥CD;
(Ⅱ)求二面角F-DE-B的大小;
(Ⅲ)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论.

查看答案和解析>>

精英家教网如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)求证:EF⊥CD;
(Ⅲ)若G是线段AD上一动点,试确定G点位置,使GF⊥平面PCB,并证明你的结论.

查看答案和解析>>

精英家教网如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.
(1)求证:EF⊥CD;
(2)求DB与平面DEF所成角的正弦值.

查看答案和解析>>

精英家教网如图,在四棱锥P-ABCD中,PD⊥底面ABCD,且底面ABCD为正方形,AD=PD=2,E,F,G分别为PC,PD,CB的中点.
(1)求证:AP∥平面EFG;
(2)求二面角G-EF-D的大小;
(3)求三棱锥C-PAB的体积.

查看答案和解析>>

20、如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.
(1)求证:CD∥面PAB;
(2)求异面直线EF与CD所成角;
(3)在AD上是否存在点Q,使QF⊥面PBC,给出理由或证明.

查看答案和解析>>

一、选择题:本大题共12小题,每小题5分,共60分.

1―5CADAD   6―10BACBC   11―12BD

二、填空题:本大题共4个小题,每小题4分,共16分.

13.  14.  15. 16.③④

三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.

17.(本小题满分12分)

       解:(I)由题意知……………………1分

      

       ………………………………………………………6分

      

       ………………………………………………8分

   (II)

       …………………………10分

      

       最大,其最大值为3.………………12分

18.(本小题满分12分)

       解:以DADCDP所在直线分别为x轴,y轴,z轴建立空间直角坐标系(如图).

       P(0,0,a),F).………………2分

   (I)

       …………………………………………4分

文本框:     (II)设平面DEF的法向量为

       得

       取x=1,则y=-2,z=1.

       ………………………………………………6分

      

       设DB与平面DEF所成角为……………………………………8分

   (III)假设存在点G满足题意

       因为

      

       ∴存在点G,其坐标为(,0,0),即G点为AD的中点.……………………12分

19.(本小题满分12分)

       解:(I)ξ的所有可能取值为0,1,2,依题意得:

       …………3分

       ∴ξ的分布列为

      

ξ

0

1

2

P

       ∴Eξ=0×+1×+2×=1.…………………………………………4分

   (II)设“甲、乙都不被选中”的事件为C,则……6分

       ∴所求概率为…………………………………8分

   (III)记“男生甲被选中”为事件A,“女生乙被选中”为事件B

       ………………………………10分

       ……………12分

20.(本小题满分12分)

       解:(I)由题意知

       是等差数列.…………………………………………2分

      

       ………………………………5分

   (II)由题设知

      

       是等差数列.…………………………………………………………8分

      

       ………………………………10分

       ∴当n=1时,

       当

       经验证n=1时也适合上式. …………………………12分

21.(本小题满分12分)

       解:(I)令

       则

       是单调递减函数.……………………………………2分

       又取

       在其定义域上有唯一实根.……………………………4分

   (II)由(I)知方程有实根(或者由,易知x=0就是方程的一个根),满足条件①.………………………………………………5分

      

       满足条件②.故是集合M中的元素.……………………………7分

   (III)不妨设在其定义域上是增函数.

       ………………………………………………………………8分

       是其定义域上的减函数.

       .………………10分

      

       …………………………………………12分

22.(本小题满分14分)

       解:(I)设

       由

       ………………………………………………2分

       又

      

       同理,由………………………………4分

       …………6分

   (II)方法一:当m=0时,A(2,2),B(2,-),Dn,2),En,-2).

       ∵ABED为矩形,∴直线AEBD的交点N的坐标为(………………8分

       当

      

       同理,对进行类似计算也得(*)式.………………………………12分

       即n=-2时,N为定点(0,0).

       反之,当N为定点,则由(*)式等于0,得n=-2.…………………………14分

       方法二:首先n=-2时,则D(-2,y1),A

         ①

         ②…………………………………………8分

       ①-②得

      

       …………………………………………………………10分

       反之,若N为定点N(0,0),设此时

       则

       由DNB三点共线,   ③

       同理ENA三点共线, ④………………12分

       ③+④得

       即-16m+8m4m=0,m(n+2)=0.

       故对任意的m都有n=-2.……………………………………………………14分

 

 

 


同步练习册答案