19.某安全生产监督部门对5家小型煤矿进行安全检查, 若安检不合格, 则 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

某企业生产AB两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).

(1)分别将AB两种产品的利润表示为投资的函数关系式;

(2)已知该企业已筹集到18万元资金,并将全部投入AB两种产品的生产.

①若平均投入生产两种产品,可获得多少利润?

②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?

 

查看答案和解析>>

((本小题满分12分)
某洗衣机生产厂家有A、B两种型号的洗衣机参加家电下乡活动。若厂家投放A、B型号洗衣机的价值分别为万元,农民购买获得的补贴分别为万元。已知厂家把总价值为10万元的A、B两种型号洗衣机投放市场,且A、B两型号的洗衣机投放金额都不低于1万元,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出其最大值(精确到,参考数据:

查看答案和解析>>

(本小题满分12分)

某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:

其中是仪器的月产量.

(1)将利润表示为月产量的函数

(2)当月产量为何值时,公司所获得利润最大?最大利润是多少?

 

查看答案和解析>>

(本小题满分12分)                                                

某工厂生产一种精密仪器, 产品是否合格需先后经过两道相互独立的工序检查,且当第一道工序检查合格后才能进入到第二道工序,经长期检测发现,该仪器第一道工序检查合格的概率为,第二道工序检查合格的概率为,已知该厂每月生产3台这种仪器.

(1)求生产一台合格仪器的概率;

(2)用表示每月生产合格仪器的台数,求的分布列和数学期望;

(3)若生产一台合格仪器可盈利10万元,不合格要亏损3万元,求该厂每月的期望盈利额.

 

查看答案和解析>>

(本小题满分12分)某工厂生产一种仪器的元件,由于受生产能力和技术水平的
限制,会产生一些次品,根据经验知道,其次品率与日产量(万件)之间满足关系:
(其中为小于6的正常数)(注:次品率=次品数/生产量,如表示每生产10件产品,有1件为次品,其余为合格品)
已知每生产1万件合格的仪器可以盈利2万元,但每生产1万件次品将亏损1万元,故厂方希望定出合适的日产量.
(1)试将生产这种仪器的元件每天的盈利额(万元)表示为日产量(万件)的函数;
(2)当日产量为多少时,可获得最大利润?

查看答案和解析>>

一、选择题:本大题共12小题,每小题5分,共60分.

1.A  2.C  3.C  4.A   5.C   6.B  7.D 8.C   9.D   10.D   11.B  12.D

二、填空题:本大题共4小题,每小题4分,共16分.

13.     14.±2     15.     16.40

三、解答题:本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤.

17.解:

,联合

,即

时,

时,

∴当时,

时,

18.解:由题意可知,这个几何体是直三棱柱,且AC⊥BC,AC=BC=CC1.

   (1)连结AC1,AB1.

由直三棱柱的性质得AA1⊥平面A1B1C1

所以AA1⊥A1B1,则四边形ABB1A1为矩形.

由矩形性质得AB1过A1B的中点M.

在△AB1C1中,由中位线性质得MN//AC1

又AC1平面ACC1A1,MN平面ACC1A1

所以MN//平面ACC1A1

   (2)因为BC⊥平面ACC1A1,AC平面ACC1A1

所以BC⊥AC1.

在正方形ACC1A1中,A1C⊥AC1.

又因为BC∩A1C=C,所以AC1⊥平面A1BC.

由MN//AC1,得MN⊥平面A1BC.

   (3)由题意CB,CA,CC1两两垂直,故可以C为的点,

CB,CA,CC1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,

又AC = BC = CC1 = a

则AB中点E的坐标为, 

为平面AA1B的法向量.

又AC1⊥平面A1BC,故为平面A1BC的法向量

设二面角A―A1B―C的大小为θ,

由题意可知,θ为锐角,所以θ= 60°,即二面角A―A1B―C为60°

19.解:(1)每家煤矿必须整改的概率是1-0.5,且每家煤矿是否整改是相互独立的.

所以恰好有两家煤矿必须整改的概率是

.

   (2)由题设,必须整改的煤矿数服从二项分布B(5,0.5).从而的数学期望是

E,即平均有2.50家煤矿必须整改.

   (3)某煤矿被关闭,即该煤矿第一次安检不合格,整改后经复查仍不合格,所以该煤矿被关闭的概率是,从而该煤矿不被关闭的概率是0.9.由题意,每家煤矿是否被关闭是相互独立的,所以至少关闭一家煤矿的概率是

20.(1)依题意,点的坐标为,可设

直线的方程为,与联立得

消去

由韦达定理得

于是

*     

   (2)假设满足条件的直线存在,其方程为

的中点为为直径的圆相交于点的中点为

点的坐标为

,得,此时为定值,故满足条件的直线存在,其方程为,即抛物线的通径所在的直线.

21.解:(1)当时,

,∴上是减函数.

   (2)∵不等式恒成立,即不等式恒成立,

不等式恒成立. 当时,  不恒成立;

时,不等式恒成立,即,∴.

时,不等式不恒成立. 综上,的取值范围是.

22.解:(1)∵ 的横坐标构成以为首项,为公差的等差数列

.

位于函数的图象上,

,

∴ 点的坐标为.

   (2)据题意可设抛物线的方程为:,

∵ 抛物线过点(0,),

,

  ∴

∵ 过点且与抛物线只有一个交点的直线即为以为切点的切线,

),

   (3)∵    

中的元素即为两个等差数列中的公共项,它们组成以为首项,以为公差的等差数列.

,且成等差数列,中的最大数,

,其公差为

*时,

此时    ∴ 不满足题意,舍去.

*时,

此时

时,

此时, 不满足题意,舍去.

综上所述,所求通项为

 

 

 


同步练习册答案