设函数. 查看更多

 

题目列表(包括答案和解析)

设函数.f(x)=x(
1
2
x+
1
x+1
,A0为坐标原点,An为函数y=f(x0I图象上横坐标为n(n∈N*)的点,向量
an
n
k=1
Ak-1Ak
,向量
i
=(1,0),设θn为向量
an
与向量
I
的夹角,则θ1=
 
,满足
n
k=1
tanθk
5
3
的最大整数n是
 

查看答案和解析>>

设函数.f(x)=x3-
92
x2+6x-a
(1)对于任意实数x∈(1,5],f′(x)≥m恒成立(其中f′(x)表示f(x)的导函数),求m的最大值;
(2)若方程f(x)=0在R上有且仅有一个实根,求a的取值范围.

查看答案和解析>>

设函数

(Ⅰ)求的单调区间;

(Ⅱ)如果对任何,都有,求的取值范围.

查看答案和解析>>

(16分)设函数

(Ⅰ)求f(x)的单调区间和极值;

(Ⅱ)是否存在实数a,使得关于x的不等式的解集为(0,+)?若存在,求a的取值范围;若不存在,试说明理由.

查看答案和解析>>

设函数.w.w.w.k.s.5.u.c.o.m           

   (1)解不等式

   (2)若关于的不等式的解集不是空集,试求的取值范围.

查看答案和解析>>

 

 

一、选择题:

l         题号

l        

l        

l        

l        

l        

l        

l        

l        

l         答案

l        

l        

l        

l        

l        

l        

l        

l        

 

1、解析:,N=

.答案:

2、解析:由题意得

答案:

3、解析:程序的运行结果是.答案:

4、解析:与直线垂直的切线的斜率必为4,而,所以,切点为.切线为,即,答案:

5、解析:由一元二次方程有实根的条件,而,由几何概率得有实根的概率为.答案:

6、解析:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,所以正确;如果两个平面与同一条直线垂直,则这两个平面平行,所以正确;

如果一个平面经过了另一个平面的一条垂线,则这两个平面平行,所以也正确;

只有选项错误.答案:

7、解析:由题意,得,答案:

8、解析:的图象先向左平移,横坐标变为原来的.答案:

二、填空题:

l         题号

l        

l        

l        

l        

l        

l        

l        

l         答案

l        

l        

l        

l        

l        

l        

l        

 

9、解析:若,则,解得

10、解析:由题意

11、解析:

12、解析:令,则,令,则

,则,令,则

,则,令,则

…,所以

13、解析:;则圆心坐标为

由点到直线的距离公式得圆心到直线的距离为,所以要求的最短距离为

14、解析:由柯西不等式,答案:

15、解析:显然为相似三角形,又,所以的面积等于9cm

 

三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.

16、解: (1),    ……………………… 2分

 ∴,………………………………………………… 4分

 解得.………………………………………………………………… 6分

(2)由,得:,     ……………………… 8分

    ………………………………… 10分

.…………………………………………………………… 12分

17、解:(1)… 2分

的最小正周期,      …………………………………4分

且当单调递增.

的单调递增区间(写成开区间不扣分).……6分

(2)当,当,即

所以.      …………………………9分

的对称轴.      …………………12分

18、解:

(1)解法一:“有放回摸两次,颜色不同”指“先白再黑”或“先黑再白”,

记“有放回摸球两次,两球恰好颜色不同”为事件,………………………2分

∵“两球恰好颜色不同”共种可能,…………………………5分

. ……………………………………………………7分

解法二:“有放回摸取”可看作独立重复实验, …………………………2分

∵每次摸出一球得白球的概率为.………………………………5分

∴“有放回摸两次,颜色不同”的概率为. …………………7分

(2)设摸得白球的个数为,依题意得:

… 10分

,……………………………………12分

.……………………14分

19、(1)证明:  连结交于点,连结.………………………1分

  是菱形, ∴的中点. ………………………………………2分

  的中点, ∴.   …………………………………3分

  平面平面, ∴平面.  ……………… 6分

(2)解法一:

 平面,平面,∴ .

,∴.  …………………………… 7分

是菱形,  ∴.

平面.  …………………………………………………………8分

,垂足为,连接,则,

所以为二面角的平面角. ………………………………… 10分

,∴.

在Rt△中,=,…………………………… 12分

.…………………………… 13分

∴二面角的正切值是. ………………………… 14分

解法二:如图,以点为坐标原点,线段的垂直平分线所在直线为轴,所在直线为轴,所在直线为轴,建立空间直角坐标系,令,……………2分

,

.  ……………4分

设平面的一个法向量为,

,得

,则,∴.  …………………7分   

平面,平面,

.  ………………………………… 8分

,∴.

是菱形,∴.

,∴平面.…………………………… 9分

是平面的一个法向量,.………………… 10分

,  …………………… 12分 

.…………………………………… 13分 

∴二面角的正切值是.  ……………………… 14分

20、解:圆的方程为,则其直径长,圆心为,设的方程为,即,代入抛物线方程得:,设

,   ………………………………2分

.  ……………………4分

…6分

, ………… 7分

因此.    ………………………………… 8分

据等差,,  …………… 10分

所以,…………… 12分

即:方程为.   …………………14分

21、解:

(1)因为, …………………………2分 

所以,满足条件.   …………………3分

又因为当时,,所以方程有实数根

所以函数是集合M中的元素. …………………………4分

(2)假设方程存在两个实数根

同步练习册答案