如图(1)在直角体型中....分别是的中点.现将沿折起.使平面平面.且所得到的四棱锥的正视图.侧视图.俯视图的面积总和为8. 查看更多

 

题目列表(包括答案和解析)

如图(1)、(2)给出两块相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,另一块剪接成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图(1),图中(2),并作简要说明;(2)试比较你剪拼的正三棱锥与正三棱柱的体积的大小;(3)如果给出的是一块任意三角形纸片,要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形的面积相等,请设计一种剪拼方法,用虚线标示在图(3)中,并作简要说明.

查看答案和解析>>

(1)给出两块相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明;
(2)试比较你剪拼的正三棱锥与正三棱柱的体积的大小;
(3)如果给出的是一块任意三角形的纸片(如图3),要求剪栟成一个直三棱柱,使它的全面积与给出的三角形的面积相等.请设计一种剪拼方法,用虚线标示在图3中,并作简要说明.
精英家教网

查看答案和解析>>

(1)给出两块相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明;
(2)试比较你剪拼的正三棱锥与正三棱柱的体积的大小;
(3)如果给出的是一块任意三角形的纸片(如图3),要求剪栟成一个直三棱柱,使它的全面积与给出的三角形的面积相等.请设计一种剪拼方法,用虚线标示在图3中,并作简要说明.

查看答案和解析>>

(1)给出两块相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明;
(2)试比较你剪拼的正三棱锥与正三棱柱的体积的大小;
(3)如果给出的是一块任意三角形的纸片(如图3),要求剪栟成一个直三棱柱,使它的全面积与给出的三角形的面积相等.请设计一种剪拼方法,用虚线标示在图3中,并作简要说明.

查看答案和解析>>

(1)给出两块相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明;
(2)试比较你剪拼的正三棱锥与正三棱柱的体积的大小;
(3)如果给出的是一块任意三角形的纸片(如图3),要求剪栟成一个直三棱柱,使它的全面积与给出的三角形的面积相等.请设计一种剪拼方法,用虚线标示在图3中,并作简要说明.

查看答案和解析>>

一、选择题:

  

1

2

3

4

5

6

7

8

9

10

A

D

A

D

B

C

A

C

B

A

二、填空题:

11.       12.         13.       14.    15.64

16.设是三棱锥四个面上的高为三棱锥内任一点,到相应四个面的距离分别为我们可以得到结论:

17.

 

三、解答题:

18.解:(1)由图像知 , ,,又图象经过点(-1,0)

  

      

   (2)

  

     ,  

时,的最大值为,当

 即时,  最小值为

 

19.(1)由几何体的正视图、侧视图、俯视图的面积总和为8得中点,联结分别是的中点,E、F、F、G四点共面

平面平面

(2)就是二面角的平面角

中,, 

,即二面角的大小为

解法二:建立如图所示空间直角坐标系,设平面

的一个法向量为

        

,又平面的法向量为(1,0,0)

(3)设

平面是线段的中点

 

20.解(1)由题意可知

  又

(2)两类情况:共击中3次概率

共击中4次概率

所求概率为

(3)设事件分别表示甲、乙能击中,互相独立。

为所 求概率

 

21.解(1)设过抛物线的焦点的直线方程为(斜率不存在),则    得

(斜率不存在)时,则

  所求抛物线方程为

(2)设

由已知直线的斜率分别记为:,得

    

  

 

22.解:(I)依题意知:直线是函数在点(1,0)处的切线,故其斜率所以直线的方程为

又因为直线的图像相切  所以由

   (Ⅱ)因为所以

时,  当时, 

因此,上单调递增,在上单调递减。

因此,当时,取得最大值

(Ⅲ)当时,,由(Ⅱ)知:当时,,即因此,有

 


同步练习册答案