C. D. 查看更多

 

题目列表(包括答案和解析)

C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B错;≥4,故A错;由基本不等式得,即,故C正确;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D错.故选C.

查看答案和解析>>

定义域为R的函数满足,且当时,,则当时,的最小值为( )

A B C D

 

查看答案和解析>>

.过点作圆的弦,其中弦长为整数的共有  (  )    

A.16条          B. 17条        C. 32条            D. 34条

 

查看答案和解析>>

 

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

A

A

A

D

B

C

C

B

C

B

 

 

13.    14. 2    15.    16. ①②③

 

17. 解:(1)由得:,             2分

即b = c = 1-a,        4分

时,

  因为,有1-a > 0,,得a = -1

 故                      8分

(2)∵是奇函数,且将的图象先向右平移个单位,再向上平移1个单位,可以得到的图象,∴是满足条件的一个平移向量.        12分

18. 解:(1)由等可能事件的概率意义及概率计算公式得;   5分

 (2)设选取的5只福娃恰好距离组成完整“奥运会吉祥物”差两种福娃记为事件B,

依题意可知,至少差两种福娃,只能是差两种福娃,则

6ec8aac122bd4f6e        11分

故选取的5只福娃距离组成完整“奥运会吉祥物”至少差两种福娃的概率为  12分

 

19.     解:(1)

又平面平面

………………4分

(2)

∴点到平面的距离即求点到平面的距离

   取中点,连结

为等边三角形

                                                               

又由(1)知

  ∴点到平面的距离即点到平面的距离为………………8分

   (3)二面角即二面角

   过,垂足为点,连结

由(2)及三垂线定理知

为二面角的平面角

  

   …12分

解法2:(1)如图,取中点,连结

为等边三角形

又∵平面平面   

建立空间直角坐标系,则有

,

………………4分

(2)设平面的一个法向量为

∴点到平面的距离即求点到平面的距离

………………………………8分

(3)平面的一个法向量为

设平面的一个法向量为

∴二面角的大小为…………………………………12分

 

 

20. 解:(1)由题意知

当n=1时,

两式相减得

整理得:)       ………………………………………………(4分)

∴数列{an}是为首项,2为公比的等比数列.

            ……………………………………(5分)

(2)

           …………………………………………………………(6分)

     …… ①

     …… ②

①-②得         ……………(9分)

                   ………………………(11分)

          ………………………………………………………(12分)

 

21. 解:(1)由,∴ 

,则,  

   

同理,有,∴为方程的两根

. 设,则     ①

  ②

由①、②消去得点的轨迹方程为.   ………………………………6分

(2)

∴当时,.        ………………………………12分

 

 

22. 解:(1)

………………………………………………………………………2分

的单调递增区间为,单调递减区间为…………5分

(2)由题

……………………6分

……………………………………………7分

 

 

 

 

 

 

 

 

 

此时,,有一个交点;…………………………9分

时,

   

  

 

 

  

,

∴当时,有一个交点;

时,有两个交点;

      当时,,有一个交点.………………………13分

综上可知,当时,有一个交点;

          当时,有两个交点.…………………………………14分

 

 

 


同步练习册答案