④函数在区间上是减函数其中所有正确命题的序号是 . 查看更多

 

题目列表(包括答案和解析)

函数f(x)=2cos2x+sin2x-1,给出下列四个命题
①函数在区间[
π
8
8
]
上是减函数;②直线x=
π
8
是函数图象的一条对称轴;③函数f(x)的图象可由函数y=
2
sin2x
的图象向左平移
π
4
而得到;④若x∈[0,
π
2
]
,则f(x)的值域是[-1,
2
]
.其中所有正确的命题的序号是(  )
A、①②B、①③C、①②④D、②④

查看答案和解析>>

函数f(x)=2cos2x+sin2x-1,给出下列四个命题:
①函数在区间[
π
8
8
]
上是减函数;
②直线x=
π
8
是函数图象的一条对称轴;
③函数f(x)的图象可由函数y=
2
sin2x
的图象向左平移
π
4
个单位长度而得到;
④若x∈[0,
π
2
]
,则f(x)的值域是[-1,
2
]

其中所有正确命题的序号是
①②④
①②④

查看答案和解析>>

函数f(x)=
3
sin2x+cos2x
,给出下列三个命题:
①函数f(x)在区间[
π
6
3
]
上是减函数;
②直线x=
π
6
是函数f(x)的图象的一条对轴称;
③函数f(x)的图象可以由函数y=2sin2x的图象向右平移
π
12
而得到.
其中正确的是
①②
①②
.(写出所有正确结论的编号)

查看答案和解析>>

函数上的奇函数,该函数的部分图像如下图所表示,分别为最高点与最低点,并且两点间的距离为,现有下面的3个命题:

(1)函数的最小正周期是

(2)函数在区间上单调递减;

(3)直线是函数的图象的一条对称轴。

其中正确的命题是             

 

查看答案和解析>>

函数f(x)=2cos2x+sin2x-1,给出下列四个命题:
①函数在区间上是减函数;
②直线是函数图象的一条对称轴;
③函数f(x)的图象可由函数的图象向左平移个单位长度而得到;
④若,则f(x)的值域是
其中所有正确命题的序号是   

查看答案和解析>>

 

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

A

A

A

D

B

C

C

B

C

B

 

 

13.    14. 2    15.    16. ①②③

 

17. 解:(1)由得:,             2分

即b = c = 1-a,        4分

时,

  因为,有1-a > 0,,得a = -1

 故                      8分

(2)∵是奇函数,且将的图象先向右平移个单位,再向上平移1个单位,可以得到的图象,∴是满足条件的一个平移向量.        12分

18. 解:(1)由等可能事件的概率意义及概率计算公式得;   5分

 (2)设选取的5只福娃恰好距离组成完整“奥运会吉祥物”差两种福娃记为事件B,

依题意可知,至少差两种福娃,只能是差两种福娃,则

6ec8aac122bd4f6e        11分

故选取的5只福娃距离组成完整“奥运会吉祥物”至少差两种福娃的概率为  12分

 

19.     解:(1)

又平面平面

………………4分

(2)

∴点到平面的距离即求点到平面的距离

   取中点,连结

为等边三角形

                                                               

又由(1)知

  ∴点到平面的距离即点到平面的距离为………………8分

   (3)二面角即二面角

   过,垂足为点,连结

由(2)及三垂线定理知

为二面角的平面角

  

   …12分

解法2:(1)如图,取中点,连结

为等边三角形

又∵平面平面   

建立空间直角坐标系,则有

,

………………4分

(2)设平面的一个法向量为

∴点到平面的距离即求点到平面的距离

………………………………8分

(3)平面的一个法向量为

设平面的一个法向量为

∴二面角的大小为…………………………………12分

 

 

20. 解:(1)由题意知

当n=1时,

两式相减得

整理得:)       ………………………………………………(4分)

∴数列{an}是为首项,2为公比的等比数列.

            ……………………………………(5分)

(2)

           …………………………………………………………(6分)

     …… ①

     …… ②

①-②得         ……………(9分)

                   ………………………(11分)

          ………………………………………………………(12分)

 

21. 解:(1)由,∴ 

,则,  

   

同理,有,∴为方程的两根

. 设,则     ①

  ②

由①、②消去得点的轨迹方程为.   ………………………………6分

(2)

∴当时,.        ………………………………12分

 

 

22. 解:(1)

………………………………………………………………………2分

的单调递增区间为,单调递减区间为…………5分

(2)由题

……………………6分

……………………………………………7分

 

 

 

 

 

 

 

 

 

此时,,有一个交点;…………………………9分

时,

   

  

 

 

  

,

∴当时,有一个交点;

时,有两个交点;

      当时,,有一个交点.………………………13分

综上可知,当时,有一个交点;

          当时,有两个交点.…………………………………14分

 

 

 


同步练习册答案