D.若为双曲线上的一点..分别为双曲线的左右焦点.且.则 或. 查看更多

 

题目列表(包括答案和解析)

为双曲线上一点,分别为双曲线的左右焦点,且,则                                                           (    )

A.2或6 B.6 C.2 D.7

查看答案和解析>>

双曲线的左、右焦点分别为,若为其上一点,且,则双曲线的离心率为(    )

A.B.C.D.

查看答案和解析>>

双曲线的左、右焦点分别为F1,F2,渐近线分别为l1,l2,点P在第一 象限内且在l1上,若l2⊥PF1,l2∥PF2,则双曲线的离心率是( )
A.
B.2
C.
D.

查看答案和解析>>

双曲线的左、右焦点分别为F1,F2,渐近线分别为l1,l2,点P在第一 象限内且在l1上,若l2⊥PF1,l2∥PF2,则双曲线的离心率是( )
A.
B.2
C.
D.

查看答案和解析>>

双曲线的左、右焦点分别为F1,F2,渐近线分别为l1,l2,点P在第一 象限内且在l1上,若l2⊥PF1,l2∥PF2,则双曲线的离心率是( )
A.
B.2
C.
D.

查看答案和解析>>

一、选择题  1--5 ADACB   6--10  ABACD  11―12 CB

二、填空题  13.8    14.7   15.12   16.AB

三、解答题

17.解:(Ⅰ)

.…………………………(4分)  

 ,  .………………………(6分)

(Ⅱ)由余弦定理,得 .………(8分)

, 

学科网(Zxxk.Com)学科网(Zxxk.Com)所以的最小值为,当且仅当时取等号.………………(12分)

学科网(Zxxk.Com)18.(Ⅰ)解法一:依据题意,因为队伍从水路或陆路抵达灾区的概率相等,则将“队伍从水路或陆路抵达灾区”视为同一个事件. 记“队伍从水路或陆路抵达灾区”为事件C,且B、C相互独立,而且.……………………………(2分)

在5月13日恰有1支队伍抵达灾区的概率是

.……………………(6分)

解法二:在5月13日恰有1支队伍抵达灾区的概率是

.…………(6分)

(Ⅱ)依据题意,因为队伍从水路或陆路抵达灾区的概率相等,则将“队伍从水路或陆路抵达灾区”视为同一个事件. 记“队伍从水路或陆路抵达灾区”为事件C,且B、C相互独立,而且.

设5月13日抵达灾区的队伍数为,则=0、1、2、3、4. ……………………(7分)

由已知有:

.

答:在5月13日抵达灾区的队伍数为2时概率最大……………………(12分)

19. (I)由已知a2a1=-2, a3a2=-1, -1-(-2)=1

an+1an=(a2a1)+(n-1)?1=n-3 

n≥2时,an=( anan1)+( an1an2)+…+( a3a2)+( a2a1)+ a1

          =(n-4)+(n-5) +…+(-1)+(-2)+6 =

n=1也合适.  ∴an=  (n∈N*) ……………………3分

又b1-2=4、b2-2=2 .而  ∴bn-2=(b1-2)?()n1即bn=2+8?()n……(6分)

∴数列{an}、{bn}的通项公式为:an= ,bn=2+()n3

学科网(Zxxk.Com)(II)设

学科网(Zxxk.Com)学科网(Zxxk.Com)当k≥4时为k的增函数,-8?()k也为k的增函数,而f(4)=

学科网(Zxxk.Com)∴当k≥4时ak-bk………………10分

又f(1)=f(2)=f(3)=0   ∴不存在k, 使f(k)∈(0,)…………12分

20解法1:(Ⅰ)因为M是底面BC边上的中点,且AB=AC,所以AMBC,

学科网(Zxxk.Com)在正三棱柱ABC-A1B1C1中,底面,  AM.所以AM平面.

(或:连结  又,.)…………(5分)

(II)因为AM平面

M平面,NM平面

∴AMM, AMNM,

MN为二面角―AM―N的平面角. …………(7分)

,设C1N=,则CN=1-

M=,MN=

学科网(Zxxk.Com)N,得N=

MN中,由余弦定理得 

,  …(10分)

=.故=2. …    (12分)

解法2:(Ⅰ)建立如图所示的空间直角坐标系,则(0,0,1),M(0,,0),

C(0,1,0), A (),设N (0,1,a) ,所以,

,

因为所以,同法可得.又故AM面BC.

   (II)由(Ⅰ)知??为二面角―AM―N的平面角,以下同法一.

21解(Ⅰ)由已知  

学科网(Zxxk.Com)    ∴………………(2分)

    ∴ (舍去

…(4分)

(Ⅱ)令    即的增区间为

在区间上是增函数

     则……(8分)

(Ⅲ)令

    

 ∴上的最大值为4,最小值为0………………(10分)

时,……………(12分)

22.解  (1)设为椭圆的左特征点,椭圆的左焦点为,可设直线的方程为.并将它代入得:,即.设,则,……(3分)

轴平分,∴.即.

,∴.……………(5分)

于是.

,即.………………(7分)

(2)对于椭圆.于是猜想:椭圆的“左特征点”是椭圆的左准线与轴的交点. ………………(9分)

学科网(Zxxk.Com)证明:设椭圆的左准线轴相交于M点,过A,B分别作的垂线,垂足分别为C,D.

据椭圆第二定义:

于是.∴,又均为锐角,∴,∴.

的平分线.故M为椭圆的“左特征点”. ………(14分)

 


同步练习册答案