查看更多

 

题目列表(包括答案和解析)

()(本小题满分12分)

如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。   

(Ⅰ)求证:ACSD

(Ⅱ)若SD平面PAC,求二面角P-AC-D的大小

(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。

查看答案和解析>>

如下图,矩形ABCD|AB|=1,|BC|=aPA⊥平面ABCD,|PA|=1。

(1)BC边上是否存在点Q,使得PQQD,并说明理由;

(2)若BC边上存在唯一的点Q使得PQQD,指出点Q的位置,并求出此时AD与平面

PDQ所成的角的正弦值;

(3)在(2)的条件下,求二面角Q―PD―A的正弦值。

查看答案和解析>>

(2013•房山区一模)在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,ABCD为直角梯形,BC∥AD,∠ADC=90°,BC=CD=
12
AD=1
,PA=PD,E,F为AD,PC的中点.
(Ⅰ)求证:PA∥平面BEF;
(Ⅱ)若PC与AB所成角为45°,求PE的长;
(Ⅲ)在(Ⅱ)的条件下,求二面角F-BE-A的余弦值.

查看答案和解析>>

(本题满分12分)

在三棱柱ABC-A1B1C1中,∠ACB=,AC=CB=1,D1是线段A1B1上一动点(可以与A1或B1重合)。过D1和CC1的平面与AB交于D。

(1)若四边形CDD1C1总是矩形,求证:三棱柱ABC-A1B1C1为直三棱柱;

(2)在(1)的条件下,求二面角B-AD1-C的取值范围。

   

 

查看答案和解析>>

在正四棱锥S—ABCD中,E是BC的中点,P点在侧面△SCD内及其边界上运动,并且总是保持PE⊥AC.

(1)指出动点P的轨迹(即说明动点P在满足给定的条件下运动时所形成的图形),证明你的结论;

(2)以轨迹上的动点P为顶点的三棱锥P-CDE的最大体积是正四棱锥S—ABCD体积的几分之几?

(3)设动点P在G点的位置时三棱锥P-CDE的体积取最大值V1,二面角G—DE—C的大小为α,二面角G—CE—D的大小为β,求tanα∶tanβ的值;

(4)若将“E是BC的中点”改为“E是BC上异于B、C的一定点”,其他条件不变,请指出点P的轨迹,证明你的结论.

查看答案和解析>>

一、选择题  1--5 DDCBA  6--10 ADBCA  11-12 AB

二、填空题   13.     14.12   15.   16.AC          

三、解答题

17.解:(Ⅰ)

.  

, 

(Ⅱ)由余弦定理,得 

, 

所以的最小值为,当且仅当时取等号.

18、(Ⅰ)解法一:依据题意,因为队伍从水路或陆路抵达灾区的概率相等,则将“队伍从水路或陆路抵达灾区”视为同一个事件. 记“队伍从水路或陆路抵达灾区”为事件C,且B、C相互独立,而且.……………………………………  2分

在5月13日恰有1支队伍抵达灾区的概率是

. ………………   5分

解法二:在5月13日恰有1支队伍抵达灾区的概率是

      .………………………………………………………………  5分

(Ⅱ)依据题意,因为队伍从水路或陆路抵达灾区的概率相等,则将“队伍从水路或陆路抵达灾区”视为同一个事件. 记“队伍从水路或陆路抵达灾区”为事件C,且B、C相互独立,而且.

设5月13日抵达灾区的队伍数为,则=0、1、2、3、4. ………………  6分

由已知有:;…………………………………  7分

;…………………………  8分

;…………………  9分

;……………………… 10分

. …………………………………………………  10分

因此其概率分布为:

 

0

1

2

3

4

P

                                                        ………………  11分

所以在5月13日抵达灾区的队伍数的数学期望为:

=0×+ 1× + 2× + 3×+ 4×=.

答:在5月13日抵达灾区的队伍数的数学期望=. ………………  12分

19.(I)由已知a2a=-2, a3a2=-1, -1-(-2)=1 ∴an+1an=(a2a1)+(n-1)?1=n-3 

n≥2时,an=( anan1)+( an1an2)+…+( a3a2)+( a2a1)+ a1

          =(n-4)+(n-5) +…+(-1)+(-2)+6 =

n=1也合适.  ∴an=  (n∈N*) ……………………3分

又b1-2=4、b2-2=2 .而  ∴bn-2=(b1-2)?(n1即bn=2+8?(n

∴数列{an}、{bn}的通项公式为:an= ,bn=2+(n3……………  6分

(II)设

当k≥4时为k的增函数,-8?(k也为k的增函数,……………  8分

学科网(Zxxk.Com)f(4)= ∴当k≥4时ak-bk………………10分

又f(1)=f(2)=f(3)=0   ∴不存在k, 使f(k)∈(0,)…………12分

20、证(Ⅰ)因为侧面,故

 在中,   由余弦定理有

学科网(Zxxk.Com)  故有 

  而     且平面

      ………………  4分

(Ⅱ)由

从而  且

 不妨设  ,则,则

  则

中有   从而(舍去)

的中点时,………………  8分

 法二:以为原点轴,设,则

  由得   

 即  

化简整理得       或

重合不满足题意

的中点

的中点使………………  8分

 (Ⅲ)取的中点的中点的中点的中点

 连,连,连

 连,且为矩形,

   故为所求二面角的平面角………………  10分

学科网(Zxxk.Com)中,

………………  12分

法二:由已知, 所以二面角的平面角的大小为向量的夹角………………  10分

因为  

………………  12分

21.解:(I)由,  ∴直线l的斜率为

l的方程为,∴点A坐标为(1,0)……… 2分

    则

整理,得……………………4分

∴动点M的轨迹C为以原点为中心,焦点在x轴上,长轴长为,短轴长为2的椭圆 …… 5分

(II)如图,由题意知直线l的斜率存在且不为零,设l方程为y=kx-2)(k≠0)①

高考资源网

由△>0得0<k2<.  ………………  6分

 

Ex1y1),Fx2y2),则 ②……………………………7分

由此可得………………  8分

由②知

学科网(Zxxk.Com)

 

 

 

 

 

 

 

 

.

∴△OBE与△OBF面积之比的取值范围是(3-2,1).…………12分

22解:(1)由题意知,的定义域为

   …… 2分

时, ,函数在定义域上单调递增. … 3分

(2) ①由(Ⅰ)得,当时,,函数无极值点.………………  5分                

②当时,有两个不同解,                       

时,,

此时 在定义域上的变化情况如下表:

极小值

由此表可知:时,有惟一极小值点,   …… 7分

ii)   当时,0<<1    此时,的变化情况如下表:

 

极大值

极小值

由此表可知:时,有一个极大值和一个极小值点;…9分

综上所述:当时,有惟一最小值点

时,有一个极大值点和一个极小值点

…….10分

(3)由(2)可知当时,函数,此时有惟一极小值点

      …… 9分

                   …… 11分

令函数       …… 12分

…14分

 


同步练习册答案