(Ⅱ)证明:由..可得. 查看更多

 

题目列表(包括答案和解析)

可以证明,对任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面尝试推广该命题:
(1)设由三项组成的数列a1,a2,a3每项均非零,且对任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有满足条件的数列;
(2)设数列{an}每项均非零,且对任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,数列{an}的前n项和为Sn.求证:an+12-an+1=2Sn,n∈N*
(3)是否存在满足(2)中条件的无穷数列{an},使得a2011=2009?若存在,写出一个这样的无穷数列(不需要证明它满足条件); 若不存在,说明理由.

查看答案和解析>>

可以证明,对任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面尝试推广该命题:
(1)设由三项组成的数列a1,a2,a3每项均非零,且对任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有满足条件的数列;
(2)设数列{an}每项均非零,且对任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,数列{an}的前n项和为Sn.求证:an+12-an+1=2Sn,n∈N*
(3)是否存在满足(2)中条件的无穷数列{an},使得a2011=2009?若存在,写出一个这样的无穷数列(不需要证明它满足条件); 若不存在,说明理由.

查看答案和解析>>

可以证明,对任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面尝试推广该命题:
(1)设由三项组成的数列a1,a2,a3每项均非零,且对任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有满足条件的数列;
(2)设数列{an}每项均非零,且对任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,数列{an}的前n项和为Sn.求证:an+12-an+1=2Sn,n∈N*
(3)是否存在满足(2)中条件的无穷数列{an},使得a2012=-2011?若存在,写出一个这样的无穷数列(不需要证明它满足条件); 若不存在,说明理由.

查看答案和解析>>

在解决问题:“证明数集A={x|2<x≤3}没有最小数”时,可用反证法证明.假设a(2<a≤3)是A中的最小数,则取a′=
a+2
2
,可得:2=
2+2
2
<a′=
a+2
2
a+a
2
=a≤3
,与假设中“a是A中的最小数”矛盾!那么对于问题:“证明数集B={x|x=
n
m
,m,n∈N*,并且n<m}
没有最大数”,也可以用反证法证明.我们可以假设x=
n0
m0
是B中的最大数,则可以找到x'=______(用m0,n0表示),由此可知x'∈B,x'>x,这与假设矛盾!所以数集B没有最大数.

查看答案和解析>>

在解决问题:“证明数集A={x|2<x≤3}没有最小数”时,可用反证法证明.假设a(2<a≤3)是A中的最小数,则取,可得:,与假设中“a是A中的最小数”矛盾!那么对于问题:“证明数集没有最大数”,也可以用反证法证明.我们可以假设是B中的最大数,则可以找到x'=    (用m,n表示),由此可知x'∈B,x'>x,这与假设矛盾!所以数集B没有最大数.

查看答案和解析>>


同步练习册答案